福田の数学〜上智大学2023年理工学部第1問(1)〜複素数平面と確率 - 質問解決D.B.(データベース)

福田の数学〜上智大学2023年理工学部第1問(1)〜複素数平面と確率

問題文全文(内容文):
$\Large{\boxed{1}}$ (1)次の6つの複素数が1つずつ書かれた6枚のカードがある。
$\frac{1}{2}$, 1, 2, $\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}$, $\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}$, $\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}$
これらから無作為に3枚選び、カードに書かれた3つの複素数を掛けた値に対応する複素数平面上の点をPとする。
(i)点Pが虚軸上にある確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
(ii)点Pの原点からの距離が1である確率は$\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#複素数平面#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)次の6つの複素数が1つずつ書かれた6枚のカードがある。
$\frac{1}{2}$, 1, 2, $\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}$, $\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}$, $\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}$
これらから無作為に3枚選び、カードに書かれた3つの複素数を掛けた値に対応する複素数平面上の点をPとする。
(i)点Pが虚軸上にある確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
(ii)点Pの原点からの距離が1である確率は$\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
投稿日:2023.09.21

<関連動画>

【高校数学】  数A-14  組み合わせ① ・ 基本編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$_5C_2=$
②$_8C_3=$
③$_7C_7=$
④$_9C_7=$
⑤$_6C_1=$
⑥$_{14}C_{12}=$

⑦10人の生徒から3人選ぶとき、選び方は何通り?
⑧正七角形の3個の頂点を結んでできる三角形の個数は?
この動画を見る 

【高校数学】条件付き確率例題~組合せを使おう~ 2-8.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
袋Aには白玉3個と黒玉5個、袋Bには白玉2個と黒玉2個が入っている。
まず、Aから2個を取り出して、Bに入れ、次にBから2個を取り出してAに戻す。
このとき、袋Aの白玉の個数が初めより増加する確率を求めよ。
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第3問〜確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
二つの袋$A,B$と一つの箱がある。$A$の袋には赤球2個と白球1個が入っており、
$B$の袋には赤球3個と白球1個が入っている。また、箱には何も入っていない。

(1)$A,B$の袋から球をそれぞれ1個ずつ同時に取り出し、球の色を調べずに箱に入れる。
$(\textrm{i})$箱の中の2個の球のうち少なくとも1個が赤球である確率は$\displaystyle \frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$である。

$(\textrm{ii})$箱の中をよくかき混ぜてから球を1個取り出すとき、取り出した球が赤球
である確率は$\displaystyle \frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$であり、取り出した球が赤球であったときに、
それが$B$の袋に入っていたものである条件付き確率は$\displaystyle \frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コサ\ \ }}$である。

(2)$A,B$の袋から球をそれぞれ2個ずつ同時に取り出し、球の色を調べずに箱に入れる。
$(\textrm{i})$箱の中の4個の球のうち、ちょうど2個が赤球である確率は$\displaystyle \frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}$である。
また、箱の中の4個の球のうち、ちょうど3個が赤球である確率は$\displaystyle \frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}$である。

$(\textrm{ii})$箱の中をよくかき混ぜてから球を2個同時に取り出すとき、どちらの球も
赤球である確率は$\displaystyle \frac{\boxed{\ \ タチ\ \ }}{\boxed{\ \ ツテ\ \ }}$である。また、取り出した2個の球がどちらも
赤球であったときに、それらのうちの1個のみがBの袋に入っていたものである
条件付き確率は$\displaystyle \frac{\boxed{\ \ トナ\ \ }}{\boxed{\ \ ニヌ\ \ }}$である。
この動画を見る 

【数A】確率:15本のくじの中に何本かの当たりくじが入っている。この中から同時に2本引くとき、1本が当たり、1本が外れる確率が12/35であるという。当たりくじは何本あるか。

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
15本のくじの中に何本かの当たりくじが入っている。この中から同時に2本引くとき、1本が当たり、1本が外れる確率が12/35であるという。当たりくじは何本あるか。
この動画を見る 

大阪市立大 確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A,B$が連続対戦(引分無し)
$A$が勝つ確率は毎回$P$
$A$が$B$より先に2連勝する確率を求めよ

大阪市立大過去問
この動画を見る 
PAGE TOP