問題文全文(内容文):
$x,y,z,n$は自然数である.$x^2=7^{2n}(y^2+10z^2)$である.
(1)平方数を3で割った余りは0か1であることを示せ.
(2)$yz$は3の倍数であることを示せ.
(3)$y,z$が共に素数のとき,$x$を$n$を用いて表せ.
2003千葉大過去問
$x,y,z,n$は自然数である.$x^2=7^{2n}(y^2+10z^2)$である.
(1)平方数を3で割った余りは0か1であることを示せ.
(2)$yz$は3の倍数であることを示せ.
(3)$y,z$が共に素数のとき,$x$を$n$を用いて表せ.
2003千葉大過去問
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y,z,n$は自然数である.$x^2=7^{2n}(y^2+10z^2)$である.
(1)平方数を3で割った余りは0か1であることを示せ.
(2)$yz$は3の倍数であることを示せ.
(3)$y,z$が共に素数のとき,$x$を$n$を用いて表せ.
2003千葉大過去問
$x,y,z,n$は自然数である.$x^2=7^{2n}(y^2+10z^2)$である.
(1)平方数を3で割った余りは0か1であることを示せ.
(2)$yz$は3の倍数であることを示せ.
(3)$y,z$が共に素数のとき,$x$を$n$を用いて表せ.
2003千葉大過去問
投稿日:2020.04.12