名古屋市立(医)積分 初のVチューバー解説 アイシアちゃん/仮の姿は東大数学科院卒杉山聡 - 質問解決D.B.(データベース)

名古屋市立(医)積分 初のVチューバー解説 アイシアちゃん/仮の姿は東大数学科院卒杉山聡

問題文全文(内容文):
$n:$自然数
$S_{n}:y=e^{-x}\sin x$と$y$軸の囲む面積$((n-1)\pi \leqq x \leqq n\pi)$

(1)
$S_{n}$は?

(2)
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n S_{k}$は?
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n:$自然数
$S_{n}:y=e^{-x}\sin x$と$y$軸の囲む面積$((n-1)\pi \leqq x \leqq n\pi)$

(1)
$S_{n}$は?

(2)
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n S_{k}$は?
投稿日:2019.05.14

<関連動画>

【数Ⅲ】【関数と極限】無限級数1-(x+y)+(x+y)²-(x+y)³+…+{-(x+y)}^n-1 +…が収束し、その和が1/1-xであるとき、yをxの式で表し、そのグラフをかけ。

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
$|r| \lt 1$ のとき $\displaystyle\lim_{n \to \infty} n r^n = 0$ である。
このことを利用して$,$ 次の無限級数の和を求めよ。ただし$,$ $|x| < 1$ とする。
$(1)$ $\displaystyle \frac{1}{3}$ $+ \displaystyle \frac{2}{9}$ $+\displaystyle \frac{3}{27}$ $+ \cdots \cdots$ $
+\displaystyle \frac{n}{3^n}$ $ + \cdots \cdots$
$(2)$ $1 + 2x + 3x^2 $$ + \cdots \cdots $$ + n x^{n-1} + \cdots \cdots$
この動画を見る 

大学入試問題#409「3乗根の極限きた~~~」 産業医科大学2019 #極限

アイキャッチ画像
単元: #関数と極限#関数の極限#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } (\sqrt[ 3 ]{ n^9-n^6 }-n^3)$

出典:2019年産業医科大学 入試問題
この動画を見る 

福田のわかった数学〜高校3年生理系003〜極限(3)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(3)
$\lim_{n \to \infty}(2^n+3^n)^{\frac{1}{n}}$ を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2024年理工学部第1問(2)〜漸化式とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)は実数全体で定義されており、$x\leqq 2$において
$\dfrac{2}{3}-\dfrac{1}{3}x\leqq f(x)\leqq 2-x$
を満たしているものとする。数列{$a_{ n }$}は漸化式
$a_{ n+1 }=a_{ n }+f(a_{ n })$
を満たしているものとする。
(i)$a_{ 1 } \leqq 2$ならば、すべての自然数nに対して、$a_{ 1 } \leqq a_{ n }\leqq2$となる事を証明しなさい。
(ii)$a_{ 1 } \leqq 2$ならば、$a_{ 1 }$の値によらず$\displaystyle \lim_{ n \to \infty } a_n = 2$となる事を証明しなさい。
この動画を見る 

【数Ⅲ】関数と極限:逆関数の交点

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)=\sqrt1{2(x+1)} - 1$について、次の問いに答えなさい。
(1) 関数 $y=f(x)$の逆関数 $y=f^{-1}(x) $を求めよ。
(2) 関数 $y=f(x)$と $y=f^{-1}(x)$ のグラフの共有点の座標を求めよ。
この動画を見る 
PAGE TOP