東京女子大 漸化式・数列の最大値 - 質問解決D.B.(データベース)

東京女子大 漸化式・数列の最大値

問題文全文(内容文):
$ a_1は7であり,n^2a_{n+1}-(n+1)^2a_n=-n^2(n+1)^2である.

(1)a_nの一般項を求めよ.

(2)a_nの最大値を求めよ.$
単元: #数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1は7であり,n^2a_{n+1}-(n+1)^2a_n=-n^2(n+1)^2である.

(1)a_nの一般項を求めよ.

(2)a_nの最大値を求めよ.$
投稿日:2022.10.05

<関連動画>

福田の数学〜慶應義塾大学2022年総合政策学部第1問〜ガウス記号を含む数列の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 実数xに対して、x以下の最大の整数を[x]と表すことにする。\hspace{120pt}\\
いま、数列\left\{a_n\right\}を\hspace{290pt}\\
a_n=[\sqrt{2n}+\frac{1}{2}]\hspace{200pt}\\
と定義すると\hspace{316pt}\\
a_1=\boxed{\ \ ア\ \ },\ \ \ \ a_2=\boxed{\ \ イ\ \ },\ \ \ \ a_3=\boxed{\ \ ウ\ \ },\ \ \ \ a_4=\boxed{\ \ エ\ \ },\ \ \ \ a_5=\boxed{\ \ オ\ \ },\ \ \ \ a_6=\boxed{\ \ カ\ \ },\ \ \ \ \\
となる。このとき、a_n=10となるのは、\boxed{\ \ キク\ \ } \leqq n \leqq \boxed{\ \ ケコ\ \ }\ の場合に限られる。\hspace{20pt}\\
また、\sum_{n=1}^{\boxed{\ \ ケコ\ \ }}a_n=\boxed{\ \ サシスセ\ \ }である。\hspace{160pt}\\
\end{eqnarray}
この動画を見る 

【数B】数列:第10項が50、第15項が30の等差数列{an}では、第何項が初めて負となるか。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第10項が50、第15項が30の等差数列{an}では、第何項が初めて負となるか。
この動画を見る 

数列 4STEP数B 18,19,20 等差数列基本【TAKAHASHI名人がていねいに解説】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
1,次のような3つの数、5つの数を求めよ。
(1) 3つの数は等差数列をなし、和は15,2乗の和は83
(2) 3つの数は等差数列をなし、和は21,積は-224
(3) 5つの数は等差数列をなし,和は5,2乗の和は45
2,次の数列は、各項の逆数をとったものを順に並べてできる数列が等差数列となる。このとき,x, yの値ともとの数列の一般項を求めよ。
3,ある等差数列の初項から第n頭までの和をSnとすると、S₁₀=100, S₂₀=400である。この数列の初項から第30項までの和を求めよ。
この動画を見る 

防衛大 漸化式 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#防衛大学校#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
防衛大学過去問題
$a_1=1 \quad a_{n+1}=2^{2n-2}(a_n)^2$
n自然数、一般項を求めよ。
この動画を見る 

福田の一夜漬け数学〜等差数列・等比数列(1)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
初項から第10項までの和が550,初項から第20項までの和が700である\\
等差数列\left\{a_n\right\}について\\
(1)一般項a_nを求めよ。\\
(2)数列\left\{a_n\right\}の第20項から第30項までの和を求めよ。\\
(3)初項から第n項までの和S_nの最大値とそのときのnの値を求めよ。\\
\\
\\
初項から第4項までの和が45,初項から第8項までの和が765である\\
等比数列\left\{a_n\right\}を考える。\\
(1)一般項a_nを求めよ。\\
(2)数列\left\{a_n\right\}の公比が正であるとき、数列\left\{a_{2n-1}\right\}はどのような数列か。
\end{eqnarray}
この動画を見る 
PAGE TOP