問題文全文(内容文):
$m,n$自然数、 $m \lt n,$ $0 \lt x \lt 1$
$(1+ \displaystyle \frac{x}{m^2})^m$と$(1+\displaystyle \frac{x}{n^2})^n$を大小比較せよ
出典:東京工業大学 過去問
$m,n$自然数、 $m \lt n,$ $0 \lt x \lt 1$
$(1+ \displaystyle \frac{x}{m^2})^m$と$(1+\displaystyle \frac{x}{n^2})^n$を大小比較せよ
出典:東京工業大学 過去問
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m,n$自然数、 $m \lt n,$ $0 \lt x \lt 1$
$(1+ \displaystyle \frac{x}{m^2})^m$と$(1+\displaystyle \frac{x}{n^2})^n$を大小比較せよ
出典:東京工業大学 過去問
$m,n$自然数、 $m \lt n,$ $0 \lt x \lt 1$
$(1+ \displaystyle \frac{x}{m^2})^m$と$(1+\displaystyle \frac{x}{n^2})^n$を大小比較せよ
出典:東京工業大学 過去問
投稿日:2019.01.27