【数Ⅲ】【積分とその応用】不定積分置換積分、部分積分1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】不定積分置換積分、部分積分1 ※問題文は概要欄

問題文全文(内容文):
次の不定積分を求めよ。
(1) $\displaystyle \int x\sqrt[3]{1+x}~dx$
(2) $\displaystyle \int \sin x \cos^4x~dx$
(3) $\displaystyle \int \frac {dx}{\cos^4x}$
(4) $\displaystyle \int (2x+1)e^{x^2+x+5}~dx$
(5) $\displaystyle \int \frac{e^{2x}}{(e^x+2)^2}~dx$
(6) $\displaystyle \int \frac{\log x}{x(\log x-1)^2}~dx$


次の不定積分を求めよ。
(1) $\displaystyle \int \frac{x}{\cos^2x}~dx$
(2) $\displaystyle \int x\log(x-2)~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int x\log(x^2-2)~dx$
(2) $\displaystyle \int e^x\log(e^x+1)~dx$

不定積分$\displaystyle \int (\log x)^3~dx$を求めよ。
チャプター:

0:00 置換積分法
6:06 部分積分法
11:12 部分積分法を3回用いる

単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不定積分を求めよ。
(1) $\displaystyle \int x\sqrt[3]{1+x}~dx$
(2) $\displaystyle \int \sin x \cos^4x~dx$
(3) $\displaystyle \int \frac {dx}{\cos^4x}$
(4) $\displaystyle \int (2x+1)e^{x^2+x+5}~dx$
(5) $\displaystyle \int \frac{e^{2x}}{(e^x+2)^2}~dx$
(6) $\displaystyle \int \frac{\log x}{x(\log x-1)^2}~dx$


次の不定積分を求めよ。
(1) $\displaystyle \int \frac{x}{\cos^2x}~dx$
(2) $\displaystyle \int x\log(x-2)~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int x\log(x^2-2)~dx$
(2) $\displaystyle \int e^x\log(e^x+1)~dx$

不定積分$\displaystyle \int (\log x)^3~dx$を求めよ。
投稿日:2025.03.12

<関連動画>

大学入試問題#124 高知大学(2020) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{7}{2}}^{\frac{9}{2}}\displaystyle \frac{2^x}{2^x+\sqrt{ 2 }}\ dx$を計算せよ。

出典:2020年高知大学 入試問題
この動画を見る 

【数Ⅲ】部分積分【公式不要!微分して被積分関数になるものを作り出せ】

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)\displaystyle \int x\cos x dxを求めよ.$
$ (2)\displaystyle \int (2x+1)\sin 3x dxを求めよ.$
$ (3)\displaystyle \int \log x dx,\displaystyle \int x\log x dx,\displaystyle \int \log(2x+1)dxを求めよ.$
$ (4)\displaystyle \int_{0}^{\pi} x^2\sin x dxを求めよ.$
$ (5)\displaystyle \int_{0}^{\pi} e^x \sin x dxを求めよ.$
この動画を見る 

【数Ⅲ-142】分数関数の積分②

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(分数関数の積分➁)

Q.次の不定積分を求めよ

①$\int \frac{2x^3+4x^2+6}{x^2+2x-3}dx$

➁$\int \frac{x}{x^2+x-6}dx$

③$\int \frac{1}{x^2(x+3)}dx$
この動画を見る 

大学入試問題#569「これは至高の積分」 By Picmin3daisukiさん #不定積分

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x\ \cos\ 2x}{2\sin(x+\displaystyle \frac{\pi}{4})+\cos(x-\displaystyle \frac{\pi}{4})-\cos(3x+\displaystyle \frac{\pi}{4})}\ dx$
この動画を見る 

大学入試問題#543「見た目は次数だけ」 前橋工科大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt[ 4 ]{ 3 }} (x^7-3x^3)e^{-\frac{x^4}{4}}\ dx$

出典:2023年前橋工科大学 入試問題
この動画を見る 
PAGE TOP