福田のわかった数学〜高校2年生058〜通過範囲(3)直線の通過範囲 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生058〜通過範囲(3)直線の通過範囲

問題文全文(内容文):
数学$\textrm{II}$通過範囲(3)
直線$(\cos\theta)x+(\sin\theta)y=1$ が通過する領域を図示せよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$通過範囲(3)
直線$(\cos\theta)x+(\sin\theta)y=1$ が通過する領域を図示せよ。
投稿日:2021.09.19

<関連動画>

#11数検1級1次過去問

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#数学検定#数学検定準1級
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$x^4-4x^3+x^2-3=0$を解け.
この動画を見る 

重積分⑧-4【一般の変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.

$\iint_D \\ \dfrac{2x-y}{x+y}dx\ dy$
$D:1\leqq x+y \leqq 2,1\leqq 2x-y \leqq 3$
この動画を見る 

#茨城大学(2023) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 2 } \displaystyle \frac{\sqrt{ 2+x }-\sqrt{ 6-x }}{x^2-4}$

出典:2023年茨城大学
この動画を見る 

#三重大学医学部2023#不定積分_49

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#三重大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} x \ \log (x+1)\ dx$を解け.

2023三重大学医学部過去問題
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第1問〜2つの円に同時に外接する円の条件

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 座標平面上の原点を中心とする$半径2$の円を$C_1$、中心の座標が$(7,0)$、$半径3$の円を$C_2$とする。さらに$r$を正の実数とするとき、$C_1$と$C_2$に同時に外接する円で、その中心の座標が$(a,b)$、半径が$r$であるものを$C_3$とする。ただし、2つの円が外接するとは、それらが$1点$を共有し、中心が互いの外部にあるときをいう。
$(1)r$の最小値は$\boxed{\ \ ア\ \ }$であり、$a$の最大値は$\boxed{\ \ イ\ \ }$となる。
$(2)a$と$b$は関係式$b^2=\boxed{\ \ ウエ\ \ }(a+\boxed{\ \ オカ\ \ })(a-4)$を満たす。
$(3)C_3$が$直線x=-3$に接するとき、$a=\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケ\ \ }},$ $|b|=\frac{\sqrt{\boxed{\ \ コサシ\ \ }}}{\boxed{\ \ ス\ \ }}$である。
$(4)点(a,b)$と原点を通る直線と、$点(a,b)$と$点(7,0)$を通る直線が直交するとき、
$|b|=\frac{\boxed{\ \ セソ\ \ }}{\boxed{\ \ タ\ \ }}$となる。

2021慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP