福田のわかった数学〜高校2年生058〜通過範囲(3)直線の通過範囲 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生058〜通過範囲(3)直線の通過範囲

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 通過範囲(3)\\
直線(\cos\theta)x+(\sin\theta)y=1 が通過する領域を図示せよ。
\end{eqnarray}
単元: #数Ⅱ#図形と方程式#軌跡と領域
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 通過範囲(3)\\
直線(\cos\theta)x+(\sin\theta)y=1 が通過する領域を図示せよ。
\end{eqnarray}
投稿日:2021.09.19

<関連動画>

【工夫あり】これが本当に京大の入試問題?絶対値を含んだ積分【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
定積分$\displaystyle \int_{-1}^{1}\left| x^2-\dfrac{1}{2}x-\dfrac{1}{2} \right | dx$を求めよ。

京都大過去問
この動画を見る 

東海大(医)バーゼル問題を導く

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$(\sqrt x+i)^7$の虚部は?
②$(\sqrt x+i)^7$が実数になる$x$を求めよ.
③②を満たす$x$の和を求めよ.
④$(\sqrt x+i)^{2n+1}$の虚部の$x$の$n$次と$(n-1)$次の係数を求めよ.
⑤$\displaystyle \sum_{k-1}^n \dfrac{1}{\tan^2\dfrac{k}{2n+1}\pi}$
⑥$0\lt \theta \lt \dfrac{\pi}{2}$なら$\sin\theta \lt \theta \lt \tan\theta$
$ \dfrac{1}{\tan^2\theta}\lt \dfrac{1}{\theta^2}\lt \dfrac{1}{\sin^2\theta}$である.
⑦$\displaystyle \sum_{k-1}^{\infty}\dfrac{1}{k^2}$を求めよ.

2018東海大(医)過去問
この動画を見る 

#藤田医科大学2023#定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#藤田医科大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^5x$ $dx$

出典:2023年藤田医科大学
この動画を見る 

Δの読み方知ってる?

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
”Δ”何と読む?
①デルタ
②アルファ
③ベータ
④オミクロン
この動画を見る 

三次関数の基本性質 変曲点について点対称 畳8畳

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#数学(高校生)#徳島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0$
$f(x)=x^3-6ax^2+9a^2x+b$
$0 \leqq x \leqq 1$における最大値が$\displaystyle \frac{1}{2},$最小値が$0$となる
$a,b$の値を求めよ

出典:徳島文理大学 過去問
この動画を見る 
PAGE TOP