福田のわかった数学〜高校2年生058〜通過範囲(3)直線の通過範囲 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生058〜通過範囲(3)直線の通過範囲

問題文全文(内容文):
数学$\textrm{II}$通過範囲(3)
直線$(\cos\theta)x+(\sin\theta)y=1$ が通過する領域を図示せよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$通過範囲(3)
直線$(\cos\theta)x+(\sin\theta)y=1$ が通過する領域を図示せよ。
投稿日:2021.09.19

<関連動画>

因数分解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式の計算(整式・展開・因数分解)#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$9x^2+4168x+2^{15}$
この動画を見る 

福田のわかった数学〜高校2年生073〜三角関数(12)三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(12) 最大最小(2)
$y=\cos2x+2a\sin x+1$
の$0 \leqq x \leqq \pi$における最大値、最小値を求めよ。
この動画を見る 

【高校数学】 数Ⅱ-103 三角関数を含む方程式・不等式⑤

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq \theta \lt 2π$のとき、次の方程式を解こう。

①$2\cos^2 \theta-5\cos \theta -3=0$

②$2\cos^2 \theta-\sin \theta -1=0$

③$\sqrt{ 3 } \tan^2 \theta -2\tan \theta-\sqrt{ 3 }=0$
この動画を見る 

ざ・見掛け倒しだよ

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+・・・・・・・+\dfrac{32}{33}=\dfrac{a}{33!}$
$a$を17で割った余りを求めよ.
この動画を見る 

2022北海道大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-$
$k+1 $
(1)$ f(k-1)$の値を求めよ.
(2)$ \vert k \vert \lt 2$のとき,不等式 $ f(n)\geqq 0$を解け.

2022北海道大過去問
この動画を見る 
PAGE TOP