福田の共通テスト解答速報〜2022年共通テスト数学IA問題3。プレゼントの交換の確率の問題。 - 質問解決D.B.(データベース)

福田の共通テスト解答速報〜2022年共通テスト数学IA問題3。プレゼントの交換の確率の問題。

問題文全文(内容文):
第3問\ 複数人がそれぞれプレゼントを一つずつ持ち寄り、交換会を開く。ただし、プレゼントは
全て異なるとする。
プレゼントの交換は次の手順で行う。
手順:外見が同じ袋を人数分用意し、各袋にプレゼントを一つずつ入れたうえで、
各参加者に袋を一つずつでたらめに配る。各参加者は配られた袋の中の
プレゼントを受け取る。

交換の結果、1人でも自分の持参したプレゼントを受け取った場合は、交換をやり直す。
そして、全員が自分以外の人の持参したプレゼントを受け取ったところで交換会を終了する。
(1)2人または3人で交換会を開く場合を考える。
$(\textrm{i})$2人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は
$\boxed{ア}$通りある。したがって1回目の交換で交換会が終了する確率は$\frac{\boxed{イ}}{\boxed{ウ}}$である。
$(\textrm{ii})$3人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は
$\boxed{エ}$通りある。したがって1回目の交換で交換会が終了する確率は$\frac{\boxed{オ}}{\boxed{カ}}$である。
$(\textrm{iii})$3人で交換会を開く場合、4回以下の交換で交換会が終了する確率は$\frac{\boxed{キク}}{\boxed{ケコ}}$である。

(2)4人で交換会を開く場合、1回目の交換で交換会が終了する確率を
次の構想に基づいて求めてみよう。
構想:1回目の交換で交換会が終了しないプレゼントの受け取り方の総数を求める。
そのために、自分の持参したプレゼントを受け取る人数によって場合分けをする。

1回目の交換で、4人のうち、ちょうど1人が自分の持参したプレゼントを受け取る場合は
$\boxed{サ}$通りあり、ちょうど2人が自分のプレゼントを受け取る場合は$\boxed{シ}$通りある。
このように考えていくと、1回目のプレゼントの受け取り方のうち、1回目の交換で交換会が
終了しない受け取り方の総数は$\boxed{スセ}$である。
したがって、1回目の交換で交換会が終了する確率は$\frac{\boxed{ソ}}{\boxed{タ}}$である。

(3)5人で交換会を開く場合、1回目の交換で交換会が終了する確率は$\frac{\boxed{チツ}}{\boxed{テト}}$である。
\(4)A,B,C,D,Eの5人が交換会を開く。1回目の交換でA,B,C,Dがそれぞれ自分以外
の人の持参したプレゼントを受け取った時、その回で交換会が終了する
条件付き確率は$\frac{\boxed{ナニ}}{\boxed{ヌネ}}$である。

2022共通テスト数学過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第3問\ 複数人がそれぞれプレゼントを一つずつ持ち寄り、交換会を開く。ただし、プレゼントは
全て異なるとする。
プレゼントの交換は次の手順で行う。
手順:外見が同じ袋を人数分用意し、各袋にプレゼントを一つずつ入れたうえで、
各参加者に袋を一つずつでたらめに配る。各参加者は配られた袋の中の
プレゼントを受け取る。

交換の結果、1人でも自分の持参したプレゼントを受け取った場合は、交換をやり直す。
そして、全員が自分以外の人の持参したプレゼントを受け取ったところで交換会を終了する。
(1)2人または3人で交換会を開く場合を考える。
$(\textrm{i})$2人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は
$\boxed{ア}$通りある。したがって1回目の交換で交換会が終了する確率は$\frac{\boxed{イ}}{\boxed{ウ}}$である。
$(\textrm{ii})$3人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は
$\boxed{エ}$通りある。したがって1回目の交換で交換会が終了する確率は$\frac{\boxed{オ}}{\boxed{カ}}$である。
$(\textrm{iii})$3人で交換会を開く場合、4回以下の交換で交換会が終了する確率は$\frac{\boxed{キク}}{\boxed{ケコ}}$である。

(2)4人で交換会を開く場合、1回目の交換で交換会が終了する確率を
次の構想に基づいて求めてみよう。
構想:1回目の交換で交換会が終了しないプレゼントの受け取り方の総数を求める。
そのために、自分の持参したプレゼントを受け取る人数によって場合分けをする。

1回目の交換で、4人のうち、ちょうど1人が自分の持参したプレゼントを受け取る場合は
$\boxed{サ}$通りあり、ちょうど2人が自分のプレゼントを受け取る場合は$\boxed{シ}$通りある。
このように考えていくと、1回目のプレゼントの受け取り方のうち、1回目の交換で交換会が
終了しない受け取り方の総数は$\boxed{スセ}$である。
したがって、1回目の交換で交換会が終了する確率は$\frac{\boxed{ソ}}{\boxed{タ}}$である。

(3)5人で交換会を開く場合、1回目の交換で交換会が終了する確率は$\frac{\boxed{チツ}}{\boxed{テト}}$である。
\(4)A,B,C,D,Eの5人が交換会を開く。1回目の交換でA,B,C,Dがそれぞれ自分以外
の人の持参したプレゼントを受け取った時、その回で交換会が終了する
条件付き確率は$\frac{\boxed{ナニ}}{\boxed{ヌネ}}$である。

2022共通テスト数学過去問
投稿日:2022.01.16

<関連動画>

【高校数学】反復試行の確率~今までとの違いとつながり~ 2-6【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
白玉2個、赤玉4個が入っている袋から玉を1個取り出し、色を調べてから元に戻す。
この試行を6回続けて行うとき白玉が5回以上出る確率を求めよ。
この動画を見る 

福田の数学〜一橋大学2022年文系第5問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
中身の見えない2つの箱があり、1つの箱には赤玉2つと白玉1つが入っており、
もう1つの箱には赤玉1つと白玉2つが入っている。どちらかの箱を選び、選んだ
箱の中から玉を1つ取り出して元に戻す、という操作を繰り返す。
(1) 1回目は箱を無作為に選び、2回目以降は、前回取り出した玉が赤玉なら前回
と同じ箱、前回取り出した玉が白玉なら前回とは異なる箱を選ぶ。n回目に赤玉
を取り出す確率$p_n$を求めよ。
(2)1回目は箱を無作為に選び、2回目以降は、前回取り出した玉が赤玉なら前回
と同じ箱、前回取り出した玉が白玉なら箱を無作為に選ぶ。n回目に赤玉を取り
出す確率 $q_n$を求めよ。

2022一橋大学文系過去問
この動画を見る 

【数A】【場合の数と確率】塗分け ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
・色の異なる7個の玉をつないで首飾りにする方法は何通りあるか。
・正三角柱の5つの面を青、白、赤、黄、緑の5色すべてを使って塗分ける方法は何通りあるか。
この動画を見る 

福田のわかった数学〜高校1年生083〜確率(3)さいころの目の積の確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$確率(3) 
さいころの目(1)
さいころをn回投げて出た目の積が6の倍数となる
確率を求めよ。ただし、nは2以上の自然数とする。
この動画を見る 

福田の数学〜明治大学2021年理工学部第2問〜格子点と確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#大学入試解答速報#数学#明治大学#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ nを正の整数とする。座標平面上の点でx座標とy座標がともに整数であるもの
を格子点と呼ぶ。$|x|+|y|=2n$を満たす格子点(x,\ y)全体の集合を$D_{2n}$とする。
(1)$D_4$は$\boxed{\ \ あ\ \ }$個の点からなる。一般に、$D_{2n}$は$\boxed{\ \ い\ \ }$個の点からなる。
(2)$D_{2n}$に属する点$(x,\ y)$で$|x-2n|+|y|=2n$を満たすものは全部で$\boxed{\ \ う\ \ }$個ある。
(3)$D_{2n}$に属する点$(x,\ y)$で$|x-n|+|y-n|=2n$を満たすものは全部で$\boxed{\ \ え\ \ }$個ある。
(4)$D_{2n}$から異なる2点$(x_1,\ y_1),\ (x_2,\ y_2)$を無作為に選ぶとき、
$|x_1-x_2|+|y_1-y_2|=2n$
が成り立つ確率は$\boxed{\ \ お\ \ }$である。

2021明治大学理工学部過去問
この動画を見る 
PAGE TOP