福田の数学〜名古屋大学2024年文系第1問〜高次方程式と解と係数の関係 - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2024年文系第1問〜高次方程式と解と係数の関係

問題文全文(内容文):
$\Large\boxed{1}$ 次の問いに答えよ。
(1)方程式$x^3$-$3x^2$-50=0 の実数解を求めよ。
(2)実数$p$, $q$が$p$+$q$=$pq$ を満たすとする。$X$=$pq$とおくとき、$p^3$+$q^3$を$X$で表せ。
(3)条件
$p^3$+$q^3$=50, $\displaystyle\frac{1}{p}$+$\displaystyle\frac{1}{q}$=1, $p$<$q$
を満たす0でない実数の組($p$, $q$)をすべて求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 次の問いに答えよ。
(1)方程式$x^3$-$3x^2$-50=0 の実数解を求めよ。
(2)実数$p$, $q$が$p$+$q$=$pq$ を満たすとする。$X$=$pq$とおくとき、$p^3$+$q^3$を$X$で表せ。
(3)条件
$p^3$+$q^3$=50, $\displaystyle\frac{1}{p}$+$\displaystyle\frac{1}{q}$=1, $p$<$q$
を満たす0でない実数の組($p$, $q$)をすべて求めよ。
投稿日:2024.05.28

<関連動画>

筑波大 4次方程式

単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2006年 国立大学法人筑波大学 過去問

$f(x)=x^4+2x^2-4x+8$
$(x^2+t)^2-f(x)=(px+q)^2$
を満たす整数$p,q,t$
$f(x)=0$を解け

この動画を見る 

11三重県教員採用試験(数学:1番 整数問題)

アイキャッチ画像
単元: #数A#数Ⅱ#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$p$整数
$x^2-3|x+7p=0$の2つの解$\alpha,\beta$自然数とする。
$\alpha,\beta$が最大となる$p$を求めよ。
この動画を見る 

福田のおもしろ数学343〜3次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$1 \geq a \geq b \geq c >0$ のとき $x^3+a x^2+bx+c=0$ の1つの解を $\alpha$ とする。
$|a| \leq 1$ を証明してください。
この動画を見る 

できるように作られた因数分解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 36x^4+24x^3+67x^2+24x+36$
これを因数分解せよ.
この動画を見る 

早稲田(教育)見た目は数2か数3 中身は中学入試

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#数列#早稲田大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=a_2=1,a_{n+2}=a_{n+1}+a_n,\displaystyle \sum_{n=1}^{2019} ia_n,$
$i$は虚数単位である.これを解け.

早稲田大(教育)過去問
この動画を見る 
PAGE TOP