福田の数学〜慶應義塾大学2024環境情報学部第5問〜リーグ戦の確率 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024環境情報学部第5問〜リーグ戦の確率

問題文全文(内容文):
(1) 6つの大学による野球の総当たり戦を考える。総当たり戦では、どの2つの大学も1試合ずつ対戦し、試合ごとに引き分けなしで勝敗が決定する。いま、 各大学の実力は拮抗していて、勝敗の確率は$\frac{1}{2}$ずつとする。 このとき、全勝する大学が存在する確率は$\frac{\fbox{アイ}}{\fbox{ウエ}}$ 、全勝する大学と全敗する大学が両方存在する確率は$\frac{\fbox{オカキ}}{\fbox{クケコ}}$ 、どの大学も1試合は勝って1試合は負ける確率は$\frac{\fbox{サシス}}{\fbox{セソタ}}$である。

(2) 4つの大学による野球の総当たり戦を考える。総当たり戦では、どの2つの大学も1試合ずつ対戦し、試合ごとに引き分けなしで勝敗が決定する。いま、4つの大学のうちK大学の実力が他の3つの大学よりもまさっていて、K大学が他の大学に勝つ確率は$\frac{3}{4}$負ける確率は$\frac{1}{4}$とする。一方で、K大学以外の3つの大学の2 実力は拮抗していて、これらの大学同士の勝敗の確率は$\frac{1}{2}$ずつとする。このとき、全勝する大学が存在する確率はする確率は、$\frac{\fbox{チツ}}{\fbox{テト}}$、全勝する大学と全敗する大学が両方存在する確率は$\frac{\fbox{ナニ}}{\fbox{ヌネ}}$、どの大学も1試合は勝って1試合は負ける確率は$\frac{\fbox{ノハ}}{\fbox{ヒフ}}$である。
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1) 6つの大学による野球の総当たり戦を考える。総当たり戦では、どの2つの大学も1試合ずつ対戦し、試合ごとに引き分けなしで勝敗が決定する。いま、 各大学の実力は拮抗していて、勝敗の確率は$\frac{1}{2}$ずつとする。 このとき、全勝する大学が存在する確率は$\frac{\fbox{アイ}}{\fbox{ウエ}}$ 、全勝する大学と全敗する大学が両方存在する確率は$\frac{\fbox{オカキ}}{\fbox{クケコ}}$ 、どの大学も1試合は勝って1試合は負ける確率は$\frac{\fbox{サシス}}{\fbox{セソタ}}$である。

(2) 4つの大学による野球の総当たり戦を考える。総当たり戦では、どの2つの大学も1試合ずつ対戦し、試合ごとに引き分けなしで勝敗が決定する。いま、4つの大学のうちK大学の実力が他の3つの大学よりもまさっていて、K大学が他の大学に勝つ確率は$\frac{3}{4}$負ける確率は$\frac{1}{4}$とする。一方で、K大学以外の3つの大学の2 実力は拮抗していて、これらの大学同士の勝敗の確率は$\frac{1}{2}$ずつとする。このとき、全勝する大学が存在する確率はする確率は、$\frac{\fbox{チツ}}{\fbox{テト}}$、全勝する大学と全敗する大学が両方存在する確率は$\frac{\fbox{ナニ}}{\fbox{ヌネ}}$、どの大学も1試合は勝って1試合は負ける確率は$\frac{\fbox{ノハ}}{\fbox{ヒフ}}$である。
投稿日:2024.10.24

<関連動画>

【数学Ⅰ・新課程】仮説検定の考え方【確率的に正しさを証明する】

アイキャッチ画像
単元: #数Ⅰ#確率#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)ある企業の新商品について20人中15人が「よい」と回答した.$
$この商品は「よい」商品であるか,仮説検定の考え方を用いて考察せよ.$
$(2)A,B,C,D,E,Fの6人の候補者がいる.$
$100人中25人がAを支持していると答えた.$
$Aの支持者は多いと言えるか,仮説検定の考え方を用いて考察せよ.$
この動画を見る 

福田の数学〜早稲田大学2024年人間科学部第2問〜反復試行と条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $n$を2以上の自然数とする。1から$n$までの番号が1つずつつけられた$n$個の玉が中身の見えない袋に入っている。袋の中から1個の玉を選んで番号を確認して袋に戻すという操作を$n$回繰り返す。この$n$回の操作の中で、1から$n$-1までのいずれの番号の玉も選ばれているとき、番号が$n$の玉も選ばれている条件付き確率を$P(n)$とするとき、$P(3)$=$\frac{\boxed{オ}}{\boxed{カ}}$, $P(50)$=$\frac{\boxed{キ}}{\boxed{ク}}$ である。
この動画を見る 

福田の数学〜立教大学2023年理学部第1問(5)〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)表の出る確率が$\frac{2}{3}$、裏の出る確率が$\frac{1}{3}$のコインを投げて、表が出たら+1点を加え、裏が出たら-1点を加える。というルールのゲームを行う。
0点から初めて5回コインを投げ終わった時、得点が3点以上となる確率は$\boxed{\ \ オ\ \ }$である。

2023立教大学理学部過去問
この動画を見る 

信州大(医)確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A,B$対決 $(0 \lt P \lt 1)$
$A$が勝つ確率$P$
$B$が勝つ確率$1-P$

(1)
先に3勝したほうを勝者とする
$A$が勝者となる確率を求めよ

(2)
勝ち数の差が2になったとき終了
$2n$回以内に$A$が勝つ確率$P_n$

出典:2001年信州大学医学部 過去問
この動画を見る 

慶應義塾 多項定理 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#場合の数と確率#式と証明#式の計算(整式・展開・因数分解)#場合の数#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
$(3x^2+x-2)^5$
$x^6$の係数
この動画を見る 
PAGE TOP