大学入試問題#819「楽に計算したい」 #奈良教育大学(2009) #積分方程式 - 質問解決D.B.(データベース)

大学入試問題#819「楽に計算したい」 #奈良教育大学(2009) #積分方程式

問題文全文(内容文):
次の等式を満たす関数$f(x)$を求めよ。
$f(x)=\cos\ x+2\displaystyle \int_{0}^{\frac{\pi}{2}} tf(t) \sin\ t\ dt$

出典:2009年奈良教育大学
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
次の等式を満たす関数$f(x)$を求めよ。
$f(x)=\cos\ x+2\displaystyle \int_{0}^{\frac{\pi}{2}} tf(t) \sin\ t\ dt$

出典:2009年奈良教育大学
投稿日:2024.05.14

<関連動画>

#高専#不定積分_18#元高専教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int\displaystyle \frac{2x+1}{(x^2+x+5)^3} dx$

出典:国立高等専門学校機構
この動画を見る 

福田のおもしろ数学234〜区分求積の公式の変形その2

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) $$ = \displaystyle \int_0^1 f(x) dx $ である。では、$\displaystyle \lim_{ n \to \infty } \frac{1}{n+1} \sum_{k=n+2}^{4n+1} f(\frac{k}{n})$ は?
この動画を見る 

大学入試問題#210 宮崎大学(2018) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^3}{x^2-4}\ dx$を計算せよ。

出典:2018年宮崎大学 入試問題
この動画を見る 

大学入試問題#772「初手は好みがでそう」 広島市立大学(2012) #不定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{log\ x}{\sqrt[ 3 ]{ x }} dx$

出典:2012年広島市立大学 入試問題
この動画を見る 

名古屋大学2024年の確率と積分の融合問題をその場で解きながら解説してみた!#shorts #高校数学 #名古屋大学

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
名古屋大学2024年の確率と積分の融合問題をその場で解きながら解説してみた!
この動画を見る 
PAGE TOP