【高校数学】 数B-68 等比数列とその和④ - 質問解決D.B.(データベース)

【高校数学】 数B-68 等比数列とその和④

問題文全文(内容文):
初項$a$,公比$r$,項数$n$の等比数列の和を$S_n$とすると
$r \neq 1$のとき,$S_n=①=②$
$r=1$のとき,$S_n=③$

次の等比数列の初項から第$n$項までの和と第5項までの和を求めよう.

④$1,3,9,・・・$

⑤$-2,-2,-2,・・・$

⑥$-1,2,-4,・・・$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
初項$a$,公比$r$,項数$n$の等比数列の和を$S_n$とすると
$r \neq 1$のとき,$S_n=①=②$
$r=1$のとき,$S_n=③$

次の等比数列の初項から第$n$項までの和と第5項までの和を求めよう.

④$1,3,9,・・・$

⑤$-2,-2,-2,・・・$

⑥$-1,2,-4,・・・$
投稿日:2016.02.01

<関連動画>

東京女子大 漸化式・数列の最大値

アイキャッチ画像
単元: #数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1$は7であり,$n^2a_{n+1}-(n+1)^2a_n=-n^2(n+1)^2$である.

(1)$a_n$の一般項を求めよ.

(2)$a_n$の最大値を求めよ.

東京女子大過去問
この動画を見る 

289 フィボナッチ数列をプログラムする!:100を超えるのは何項目?#shorts

アイキャッチ画像
単元: #情報Ⅰ(高校生)#数列#漸化式#数学(高校生)#プログラミング#プログラムによる動的シミュレーション#数B
指導講師: めいちゃんねる
問題文全文(内容文):
289 フィボナッチ数列をプログラムする!:100を超えるのは何項目?#shorts
【問題文】次のプログラムの実行結果を答えよ。
※プログラムは動画内参照
この動画を見る 

ちょっと変わった漸化式 和歌山大

アイキャッチ画像
単元: #数列#漸化式#和歌山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022和歌山大学過去問題
$a_{1}=\frac{1}{2}$,$a_{n+1}=\frac{2}{1+a_{n}}$
$b_{1}=1$,$a_{n}b_{n+1}=b_{n}$
数列$b_{n}$の三項間漸化式をつくれ
$a_{n}$の一般項を求めよ
この動画を見る 

奈良女子大 数列の積

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#奈良女子大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P_n=a_1a_2a_3…a_n=\displaystyle \frac{1}{(n+1)(n!)^2}$

(1)
$a_n$を求めよ

(2)
$\displaystyle \sum_{n=1}^\infty a_m$を求めよ

出典:奈良女子大学 過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第3問〜確率と数列の極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#数列の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ $n$を自然数とする。1個のさいころを繰り返し投げる実験を行い、繰り返す回数が
$2n+1$回に達するか、5以上の目が2回連続して出た場合に実験を終了する。下の表は
$n=2$の場合の例である。例$\textrm{a}$では、5以上の目が2回連続して出ず、5回で実験を
終了した。例$\textrm{b}$では、5以上の目が2回連続して出たため、3回で実験を終了した。

$\begin{array}{c|ccccc}
& 1回目 & 2回目 & 3回目 & 4回目 & 5回目\\
\hline 例\textrm{a} & ⚃ & ⚅ & ⚀ & ⚁ & ⚀\\
例\textrm{b} & ⚂ & ⚅ & ⚄ \\
\end{array}\hspace{100pt}$

この実験において、$A$を「5以上の目が2回連続して出る」事象、非負の整数$k$に対し
$B_k$を「5未満の目が出た回数がちょうど$k$である」事象とする。一般に、事象Cの
確率を$P(C),C$が起こったときの事象$D$が起こる条件付き確率を$P_C(D)$と表す。

(1)$n=1$のとき、$P(B_1)=\boxed{\ \ サ\ \ }$である。

(2)$n=2$のとき、$P_{B_{2}}(A)=\boxed{\ \ シ\ \ }$である。
以下、$n \geqq 1$とする。

(3)$P_{B_{k}}(A)=1$となる$k$の値の範囲は$0 \leqq k \leqq K_n$と表すことができる。この$K_n$を
$n$の式で表すと$K_n=\boxed{\ \ ス\ \ }$である。

(4)$p_k=P(A \cap B_k)$とおく。$0 \leqq k \leqq K_n$のとき、$p_k$を求めると$p_k=\boxed{\ \ セ\ \ }$である。
また、$S_n=\displaystyle \sum_{k=0}^{K_n}kp_k$ とおくと$\lim_{n \to \infty}S_n=\boxed{\ \ ソ\ \ }$である。

2021慶應義塾大学理工学部過去問
この動画を見る 
PAGE TOP