【高校数学】 数A-22 確率④ ・ さいころ編 Part.4 - 質問解決D.B.(データベース)

【高校数学】  数A-22  確率④ ・ さいころ編 Part.4

問題文全文(内容文):
◎数値線上の原点Oに点Pがある。
さいころを1回投げるごとに、偶数の目が出たら数値線上の方向に3、奇数の目が出たら負の方向に2だけ進む。
①5回さいころを投げたとき、点Pが原点Oにある確率は?
②10回さいころを投げたとき、Pの座標がー5である確率は?
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎数値線上の原点Oに点Pがある。
さいころを1回投げるごとに、偶数の目が出たら数値線上の方向に3、奇数の目が出たら負の方向に2だけ進む。
①5回さいころを投げたとき、点Pが原点Oにある確率は?
②10回さいころを投げたとき、Pの座標がー5である確率は?
投稿日:2014.06.14

<関連動画>

【数A】【場合の数と確率】確率の基本1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A,B,C,D,E,F,G,Hの8文字を無造作に1列に並べるとき、次のようになる確率を求めよ。
(1)両端がA,Bである。
(2)A,Bが隣り合う。
(3)AはBより左に、BはCより左にある。

男子6人、女子2人がくじ引きで席を決めて円卓を囲んで座るとき、次のようになる確率を求めよ。
(1)女子2人が隣り合う。
(2)女子2人が向かい合う。

A,B,C,Dの4人がじゃんけんを1回するとき、次の確率を求めよ。
(1)Aだけが勝つ確率
(2)1人だけが勝つ確率

3つのさいころを同時に投げるとき、次のような目が出る確率を求めよ。
(1)目の積が150
(2)目の積が18
(3)目の積が135以上
この動画を見る 

【高校数学】  数A-21  確率③ ・ さいころ編 Part.3

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎1個のさいころを6回投げるとき、次の場合の確率は?

①奇数の目がちょうど3回でる。
②2以下の目がちょうど4回でる。
③3以上の目がちょうど1回でる。
この動画を見る 

福田のわかった数学〜高校1年生075〜場合の数(14)道順(1)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(14) 道順(1)
右の街路図(※動画参照)を点Aから出発して3回だけ曲がってBへ
到達する最短経路は何通りあるか。
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第3問〜多面体の面の色の変化と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 
(1)各面が白色あるいは黒色で塗られた正四面体について、いずれか1つの面を等確率$\dfrac{1}{4}$で選択し、選択した面を除いた3つの面の色を白色であれば黒色に、黒色であれば白色に塗りなおす試行を繰り返す。正四面体の全てが白色の状態から開始するとき
$(\textrm{a})$2つの面が白色、2つの面が黒色になる最小の試行回数は$\boxed{\ \ アイ\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}$である。
$(\textrm{b})$すべての面が黒色になる最小の試行回数は$\boxed{\ \ キク\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。

(2)各面が白色あるいは黒色で塗られた立方体について、いずれか1つの面を等確率$\dfrac{1}{6}$で選択し、選択した面を除いた5つの面の色を白色であれば黒色に、黒色であれば白色に塗り直す試行をくり返す。立方体のすべての面が白色の状態から開始するとき
$(\textrm{a})$3つの面が白色、3つの面が黒色になる最小の試行回数は$\boxed{\ \ スセ\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}$である。
$(\textrm{b})$すべての面が黒色になる最小の試行回数は$\boxed{\ \ テト\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ナニヌ\ \ }}{\boxed{\ \ ネノハ\ \ }}$である。

慶應義塾大学2021年環境情報学部第3問
この動画を見る 

【見るだけで点数UP】共通テスト数学のコツ

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学のコツ(伸ばしやすい単元)紹介動画です
この動画を見る 
PAGE TOP