問題文全文(内容文):
複素数平面上で不等式$2|z-2| \leqq |z-5| \leqq |z+1|$を満たす点$z$が描く図形を$D$とする。
(1)$D$を図示せよ。
(2)点$z$が$D$上を動くものとする。$argz=\theta$とするとき、$\tan\theta$のとりうる範囲を求めよ。
(3)$D$の面積を求めよ。
複素数平面上で不等式$2|z-2| \leqq |z-5| \leqq |z+1|$を満たす点$z$が描く図形を$D$とする。
(1)$D$を図示せよ。
(2)点$z$が$D$上を動くものとする。$argz=\theta$とするとき、$\tan\theta$のとりうる範囲を求めよ。
(3)$D$の面積を求めよ。
単元:
#大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数C
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
複素数平面上で不等式$2|z-2| \leqq |z-5| \leqq |z+1|$を満たす点$z$が描く図形を$D$とする。
(1)$D$を図示せよ。
(2)点$z$が$D$上を動くものとする。$argz=\theta$とするとき、$\tan\theta$のとりうる範囲を求めよ。
(3)$D$の面積を求めよ。
複素数平面上で不等式$2|z-2| \leqq |z-5| \leqq |z+1|$を満たす点$z$が描く図形を$D$とする。
(1)$D$を図示せよ。
(2)点$z$が$D$上を動くものとする。$argz=\theta$とするとき、$\tan\theta$のとりうる範囲を求めよ。
(3)$D$の面積を求めよ。
投稿日:2021.11.26