【数C】【平面上のベクトル】ベクトルを使った面積、内心 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【平面上のベクトル】ベクトルを使った面積、内心 ※問題文は概要欄

問題文全文(内容文):
問題1
次の3点を頂点とする三角形の面積$S$を求めよ。
(1)$O(0, 0), A(2, -3), B(-1, 2)$
(2)$A(1, 2), B(2+\sqrt{ 3}, 1+\sqrt{ 3}), C(2, 2+\sqrt{ 3 })$
(3)$A(1+\sqrt{ 3 }, 2), B(\sqrt{ 3 }, 5), C(4+\sqrt{ 3 }, 1)$

問題2
$\triangle OAB$において、$\overrightarrow{ OA } = \vec{ a } , \overrightarrow{ OB } = \vec{ b }$とする。$|\vec{ a }|=2, |\vec{ b }|=3, |\vec{ a }+\vec{ b }|=4$のとき、$\triangle OAB$の面積$S$を求めよ。

問題3
$\angle A=60°, AB=8, AC=5$である$\triangle ABC$の内心を$I$とする。$\overrightarrow{ AB } = \vec{ b }, \overrightarrow{ AC } = \vec{ c }$とするとき、$\overrightarrow{ AI }$を$\vec{ b }, \vec{ c }$を用いて表せ。

問題4
三角形ABCの辺BC, CA, ABの中点をそれぞれA(1), B(1), C(1)とし、平面上の任意の点Oに対し、線分OA, OB, OCの中点をそれぞれA(2), B(2), C(2)とする。線分A(1)A(2), B(1)B(2),C(1)C(2)の中点は一致することを証明せよ。
チャプター:

0:00 オープニング
0:04 問題1
8:18 問題2
10:28 問題3
15:07 問題4

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
次の3点を頂点とする三角形の面積$S$を求めよ。
(1)$O(0, 0), A(2, -3), B(-1, 2)$
(2)$A(1, 2), B(2+\sqrt{ 3}, 1+\sqrt{ 3}), C(2, 2+\sqrt{ 3 })$
(3)$A(1+\sqrt{ 3 }, 2), B(\sqrt{ 3 }, 5), C(4+\sqrt{ 3 }, 1)$

問題2
$\triangle OAB$において、$\overrightarrow{ OA } = \vec{ a } , \overrightarrow{ OB } = \vec{ b }$とする。$|\vec{ a }|=2, |\vec{ b }|=3, |\vec{ a }+\vec{ b }|=4$のとき、$\triangle OAB$の面積$S$を求めよ。

問題3
$\angle A=60°, AB=8, AC=5$である$\triangle ABC$の内心を$I$とする。$\overrightarrow{ AB } = \vec{ b }, \overrightarrow{ AC } = \vec{ c }$とするとき、$\overrightarrow{ AI }$を$\vec{ b }, \vec{ c }$を用いて表せ。

問題4
三角形ABCの辺BC, CA, ABの中点をそれぞれA(1), B(1), C(1)とし、平面上の任意の点Oに対し、線分OA, OB, OCの中点をそれぞれA(2), B(2), C(2)とする。線分A(1)A(2), B(1)B(2),C(1)C(2)の中点は一致することを証明せよ。
投稿日:2025.02.16

<関連動画>

福田の数学〜慶應義塾大学2021年商学部第3問〜平面ベクトルと三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$
点Oを原点とする座標平面上の点$P,Q,R$を、ベクトル$\overrightarrow{ a }=(2,1),\overrightarrow{ b }=(1,2)$を用い、
位置ベクトル$\overrightarrow{ OP }=f(t)\overrightarrow{ a }, \overrightarrow{ OQ }=f(t+2)\overrightarrow{ a }, \overrightarrow{ OR }=g(t)\overrightarrow{ b }$で定める。
ここで、$f(t),g(t)$は、実数tを用いて、
$f(t)=9t^2+1, g(t)=\frac{1}{8}(t^2-6t+9)$で表される。
(1)$\overrightarrow{ a }$と$\overrightarrow{ b }$のなす角を$\theta$とする。ただし、$0 \leqq \theta \leqq \pi$とする。このとき、
$\sin\theta=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。

(2)$t=-\boxed{\ \ ウ\ \ }$のとき、点Pと点Qが一致する。それ以外のとき、点P,Q,Rは
異なる3点となり、$t=\boxed{\ \ エ\ \ }$のときその3点が一直線上に並ぶ。

(3)$-\frac{4}{3} \leqq t \leqq 4$の範囲において、上記(2)以外のとき、$\triangle PQR$の面積は
$t=\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$で最大値$\boxed{\ \ キク\ \ }$をとる。

2021慶應義塾大学商学部過去問
この動画を見る 

【数B】ベクトル:ベクトルの基本⑭係数比較、メネラウスの定理でベクトルを求める

アイキャッチ画像
単元: #数A#図形の性質#平面上のベクトル#内心・外心・重心とチェバ・メネラウス#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD,BEの交点をPとする。ABをb,ACをcとするとき、APをb,cを用いて表せ.
この動画を見る 

【数学B/平面ベクトル】ベクトルの成分の成分計算

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\vec{ a }=(-1,2),\vec{ b }=(2,-3)$のとき、次のベクトルを成分で表し、その大きさを求めよ。
この動画を見る 

福田の数学〜立教大学2022年経済学部第2問〜平面ベクトルの直交条件

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
tを正の実数とする。$OA=1,\ OB=t$である三角形OABにおいて、$\overrightarrow{ a }=\overrightarrow{ OA }$
$\overrightarrow{ b }=\overrightarrow{ OB },\angle AOB=θ$とする。ただし、$0 \lt θ \lt \frac{\pi}{2}$とする。また、辺OAの中点
をM、辺OBを1:2に内分する点をNとする。次の問いに答えよ。
(1)$\overrightarrow{ AN }$と$\overrightarrow{ BM }$を$\overrightarrow{ a }$と$\overrightarrow{ b }$を用いて表せ。
(2)内積$\overrightarrow{ AN }・\overrightarrow{ BM }$を$t$と$\cos θ$を用いて表せ。
(3)$\overrightarrow{ AN }∟\overrightarrow{ BM }$であるとき、$\cos θ$を$t$を用いて表せ。
(4)$\overrightarrow{ AN }∟\overrightarrow{ BM }$であるとき、$\cos θ$の最小値とそれを与えるtの値をそれぞれ求めよ。
(5)$\overrightarrow{ AN }∟\overrightarrow{ BM }$となるθが存在するtの値の範囲を求めよ。

2022立教大学経済学部過去問
この動画を見る 

【わかりやすく】内分点の位置ベクトルの頻出問題(数学B・位置ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
三角形$ABC$において、辺$AB$の中点を$D$、辺$AC$を$3:2$に内分する点を$E$とし、線分$CD,BE$の交点を$P$とする。
$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AC }=\vec{ c }$とするとき、$\overrightarrow{ AP }$を$\vec{ b },\vec{ c }$を用いて表せ。
この動画を見る 
PAGE TOP