【数C】【平面上のベクトル】ベクトルを使った面積、内心 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【平面上のベクトル】ベクトルを使った面積、内心 ※問題文は概要欄

問題文全文(内容文):
問題1
次の3点を頂点とする三角形の面積$S$を求めよ。
(1)$O(0, 0), A(2, -3), B(-1, 2)$
(2)$A(1, 2), B(2+\sqrt{ 3}, 1+\sqrt{ 3}), C(2, 2+\sqrt{ 3 })$
(3)$A(1+\sqrt{ 3 }, 2), B(\sqrt{ 3 }, 5), C(4+\sqrt{ 3 }, 1)$

問題2
$\triangle OAB$において、$\overrightarrow{ OA } = \vec{ a } , \overrightarrow{ OB } = \vec{ b }$とする。$|\vec{ a }|=2, |\vec{ b }|=3, |\vec{ a }+\vec{ b }|=4$のとき、$\triangle OAB$の面積$S$を求めよ。

問題3
$\angle A=60°, AB=8, AC=5$である$\triangle ABC$の内心を$I$とする。$\overrightarrow{ AB } = \vec{ b }, \overrightarrow{ AC } = \vec{ c }$とするとき、$\overrightarrow{ AI }$を$\vec{ b }, \vec{ c }$を用いて表せ。

問題4
三角形ABCの辺BC, CA, ABの中点をそれぞれA(1), B(1), C(1)とし、平面上の任意の点Oに対し、線分OA, OB, OCの中点をそれぞれA(2), B(2), C(2)とする。線分A(1)A(2), B(1)B(2),C(1)C(2)の中点は一致することを証明せよ。
チャプター:

0:00 オープニング
0:04 問題1
8:18 問題2
10:28 問題3
15:07 問題4

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
次の3点を頂点とする三角形の面積$S$を求めよ。
(1)$O(0, 0), A(2, -3), B(-1, 2)$
(2)$A(1, 2), B(2+\sqrt{ 3}, 1+\sqrt{ 3}), C(2, 2+\sqrt{ 3 })$
(3)$A(1+\sqrt{ 3 }, 2), B(\sqrt{ 3 }, 5), C(4+\sqrt{ 3 }, 1)$

問題2
$\triangle OAB$において、$\overrightarrow{ OA } = \vec{ a } , \overrightarrow{ OB } = \vec{ b }$とする。$|\vec{ a }|=2, |\vec{ b }|=3, |\vec{ a }+\vec{ b }|=4$のとき、$\triangle OAB$の面積$S$を求めよ。

問題3
$\angle A=60°, AB=8, AC=5$である$\triangle ABC$の内心を$I$とする。$\overrightarrow{ AB } = \vec{ b }, \overrightarrow{ AC } = \vec{ c }$とするとき、$\overrightarrow{ AI }$を$\vec{ b }, \vec{ c }$を用いて表せ。

問題4
三角形ABCの辺BC, CA, ABの中点をそれぞれA(1), B(1), C(1)とし、平面上の任意の点Oに対し、線分OA, OB, OCの中点をそれぞれA(2), B(2), C(2)とする。線分A(1)A(2), B(1)B(2),C(1)C(2)の中点は一致することを証明せよ。
投稿日:2025.02.16

<関連動画>

【数B】ベクトル:ベクトルの基本⑨最小値を求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
aベクトル$+tb$ベクトルの絶対値の最小値を取るtの値について
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年2B第5問〜ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
$O$を原点とする座標空間に2点$A(-1,2,0), B(2,p,q)$がある。ただし、$q \gt 0$とする。
線分$AB$の中点$C$から直線$OA$に引いた垂線と直線$OA$の交点$D$は、線分$OA$を9:1に内分
するものとする。また、点$C$から直線$OB$に引いた垂線と直線$OB$の交点Eは、線分$OB$を$3:2$
に内分するものとする。

(1)点Bの座標を求めよう。
$|\overrightarrow{ OA }|^2=\boxed{\ \ ア\ \ }$である。また、$\overrightarrow{ OD }=\displaystyle \frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウエ\ \ }}\overrightarrow{ OA }$であることにより、
$\overrightarrow{ CD }=\displaystyle \frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}\overrightarrow{ OA }-\displaystyle \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\overrightarrow{ OB }$と表される。$\overrightarrow{ OA } \bot \overrightarrow{ CD }$から
$\overrightarrow{ OA }・\overrightarrow{ OB }=\boxed{\ \ ケ\ \ }$ $\ldots$①
である。同様に、$\overrightarrow{ CE }$を$\overrightarrow{ OA },\overrightarrow{ OB }$を用いて表すと、$\overrightarrow{ OB } \bot \overrightarrow{ CE }$から
$|\overrightarrow{ OB }|^2=20$ $\ldots$②
を得る。

①と②、および$q \gt 0$から、$B$の座標は$\left(2, \boxed{\ \ コ\ \ }, \sqrt{\boxed{\ \ サ\ \ }}\right)$である。


(2)3点$O,A,B$の定める平面を$\alpha$とし、点$(4, 4, -\sqrt7)$を$G$とする。
また、$\alpha$上に点$H$を$\overrightarrow{ GH } \bot \overrightarrow{ OA }$と$\overrightarrow{ GH } \bot \overrightarrow{ OB }$が成り立つようにとる。$\overrightarrow{ OH }$を
$\overrightarrow{ OA },\overrightarrow{ OB }$を用いて表そう。
$H$が$\alpha$上にあることから、実数$s,t$を用いて
$\overrightarrow{ OH }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
と表される。よって
$\overrightarrow{ GH }=\boxed{\ \ シ\ \ }\ \overrightarrow{ OG }+s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
である。これと、$\overrightarrow{ GH } \bot \overrightarrow{ OA }$および$\overrightarrow{ GH } \bot \overrightarrow{ OB }$が成り立つことから、
$s=\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}, t=\displaystyle \frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タチ\ \ }}$が得られる。ゆえに
$\overrightarrow{ OH }=\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\ \overrightarrow{ OA }+\displaystyle \frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タチ\ \ }}\ \overrightarrow{ OB }$
となる。また、このことから、$H$は$\boxed{\boxed{\ \ ツ\ \ }}$であることがわかる。

$\boxed{\boxed{\ \ ツ\ \ }}$の解答群
⓪三角形$OAC$の内部の点
①三角形$OBC$の内部の点
②点$O,C$と異なる、線分$OC$上の点
③三角形$OAB$の周上の点
④三角形$OAB$の内部にも周上にもない点

2021共通テスト過去問
この動画を見る 

落とせないベクトル!京大でもびびる必要なし!【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形ABCと点Pに対して、次の二つの条件は同値であることを証明せよ。
(i) 点Pは三角形ABCの内部(周は除く)にある
(ii)正の数a,b,cがあって、aPA+bPB+cPC=0が成り立つ。
この動画を見る 

【わかりやすく解説】ベクトルの平行条件(数学B/平面ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
ベクトル$\vec{ a }=(3,1),\vec{ b }=(5-4x,-3+x)$が平行になるように、$x$の値を求めよ。
この動画を見る 

19京都府教員採用試験(数学:高4番 ベクトル・三角関数)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
4⃣$OA=2\sqrt2,OB=4,cos\angle AOB=\frac{\sqrt2}{4}$の△OABにおいて
|$(cost+sint)\overrightarrow{ OA }+(cost-sint)\overrightarrow{ OB }$|
の最大値とそのときのtの値を求めよ。
$(0 \leqq t \leqq \frac{\pi}{4})$
この動画を見る 
PAGE TOP