【数C】【平面上のベクトル】ベクトルを使った面積、内心 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【平面上のベクトル】ベクトルを使った面積、内心 ※問題文は概要欄

問題文全文(内容文):
問題1
次の3点を頂点とする三角形の面積$S$を求めよ。
(1)$O(0, 0), A(2, -3), B(-1, 2)$
(2)$A(1, 2), B(2+\sqrt{ 3}, 1+\sqrt{ 3}), C(2, 2+\sqrt{ 3 })$
(3)$A(1+\sqrt{ 3 }, 2), B(\sqrt{ 3 }, 5), C(4+\sqrt{ 3 }, 1)$

問題2
$\triangle OAB$において、$\overrightarrow{ OA } = \vec{ a } , \overrightarrow{ OB } = \vec{ b }$とする。$|\vec{ a }|=2, |\vec{ b }|=3, |\vec{ a }+\vec{ b }|=4$のとき、$\triangle OAB$の面積$S$を求めよ。

問題3
$\angle A=60°, AB=8, AC=5$である$\triangle ABC$の内心を$I$とする。$\overrightarrow{ AB } = \vec{ b }, \overrightarrow{ AC } = \vec{ c }$とするとき、$\overrightarrow{ AI }$を$\vec{ b }, \vec{ c }$を用いて表せ。

問題4
三角形ABCの辺BC, CA, ABの中点をそれぞれA(1), B(1), C(1)とし、平面上の任意の点Oに対し、線分OA, OB, OCの中点をそれぞれA(2), B(2), C(2)とする。線分A(1)A(2), B(1)B(2),C(1)C(2)の中点は一致することを証明せよ。
チャプター:

0:00 オープニング
0:04 問題1
8:18 問題2
10:28 問題3
15:07 問題4

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
次の3点を頂点とする三角形の面積$S$を求めよ。
(1)$O(0, 0), A(2, -3), B(-1, 2)$
(2)$A(1, 2), B(2+\sqrt{ 3}, 1+\sqrt{ 3}), C(2, 2+\sqrt{ 3 })$
(3)$A(1+\sqrt{ 3 }, 2), B(\sqrt{ 3 }, 5), C(4+\sqrt{ 3 }, 1)$

問題2
$\triangle OAB$において、$\overrightarrow{ OA } = \vec{ a } , \overrightarrow{ OB } = \vec{ b }$とする。$|\vec{ a }|=2, |\vec{ b }|=3, |\vec{ a }+\vec{ b }|=4$のとき、$\triangle OAB$の面積$S$を求めよ。

問題3
$\angle A=60°, AB=8, AC=5$である$\triangle ABC$の内心を$I$とする。$\overrightarrow{ AB } = \vec{ b }, \overrightarrow{ AC } = \vec{ c }$とするとき、$\overrightarrow{ AI }$を$\vec{ b }, \vec{ c }$を用いて表せ。

問題4
三角形ABCの辺BC, CA, ABの中点をそれぞれA(1), B(1), C(1)とし、平面上の任意の点Oに対し、線分OA, OB, OCの中点をそれぞれA(2), B(2), C(2)とする。線分A(1)A(2), B(1)B(2),C(1)C(2)の中点は一致することを証明せよ。
投稿日:2025.02.16

<関連動画>

【数C】【平面上のベクトル】ベクトル方程式1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
$\triangle ABC$の重心を$G$、辺$BC$の中点を$M$とし、$\overrightarrow{GA}=\vec{a}, \overrightarrow{GB}=\vec{b}$とする。
(1) $\overrightarrow{AM}$、$\overrightarrow{GC}$を$\vec{a}, \vec{b}$を用いて表せ。
(2)点$M$を通り、辺$CA$に平行な直線上の点を$P$とし、$\overrightarrow{GP}=\vec{p}$とする。この直線のベクトル方程式を、$\vec{a}, \vec{b}, \vec{p}$を用いて求めよ。

問題2
2直線 $l:(x,y)=(0,3)+s(1,2), m:(x,y)=(6,1)+t(-2,3)$について、次の問いに答えよ。ただし、$s,t$は媒介変数とする。
(1)$l$と$m$の交点の座標を求めよ。
(2)点$P(4,1)$から$l$に垂線$PQ$を下ろす。このとき、点$Q$の座標を求めよ。

問題3
$\triangle OAB$に対して、点$P$が次の条件を満たしながら動くとき、点$P$の存在範囲を図示せよ。
(1) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}, s+t=4, s\geqq0, t\geqq0$
(2) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}, 0\leqq s+t\leqq4, s\geqq0, t\geqq0$
この動画を見る 

【数B】平面ベクトル:ベクトルの基本③ 絶対値の最大最小は2乗で考えよ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
tは実数とする。
aベクトル=(2,1), bベクトル=(3,4)に対して
$\vert a+tb\vert $は$t=□$のとき最小値$□$を取る
この動画を見る 

福田の1.5倍速演習〜合格する重要問題041〜上智大学2019年度TEAP文系第3問〜長方形の紙を折り返す問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上のベクトル#図形と方程式#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$AB=2,BC=3$の長方形ABCDの形の紙がある。DE=aとなる辺DC上の
点Eを考える。AがEと重なるように紙を折るとき、折り目となる線と辺AD,
辺BCとの交点をそれぞれP,Qとする。

(1)aを用いて表すと、$AP=\frac{\boxed{二}}{\boxed{ヌ}}a^2+\frac{\boxed{ネ}}{\boxed{ノ}}$である.
(2)aを用いて表すと、$BQ=\frac{\boxed{ハ}}{\boxed{ヒ}}a^2+
\frac{\boxed{フ}}{\boxed{ヘ}}a+\frac{\boxed{ホ}}{\boxed{マ}}$である。
(3)aを用いて表すと、$PQ=\frac{\boxed{ミ}}{\boxed{ム}}\sqrt{a^2+\boxed{メ}}$である。
(4)四角形ABQPの面積はaを用いて表すと、$\frac{\boxed{モ}}{\boxed{ヤ}}a^2+\frac{\boxed{ユ}}{\boxed{ヨ}}a+\boxed{ラ}$
であり、その最小値は$\frac{\boxed{リ}}{\boxed{ル}}$である。

2019上智大過去問
この動画を見る 

【高校数学】 数B-24 ベクトルと図形②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\vec{ a }≠\vec{ 0 },\vec{ b }≠\vec{ 0 },\vec{ a }≠\vec{ b }$のとき

$S\vec{ a }+t\vec{ b }=S'\vec{ a }+t'\vec{ b } \Leftrightarrow S=S',t=t'$

◎$\vec{ a }≠\vec{ 0 },\vec{ b }≠\vec{ 0 },\vec{ a }≠\vec{ b }$とする。次の等式を満たす実数S,tの値を求めよう。

①$5\vec{ a }+S\vec{ b }=t\vec{ a }-2\vec{ b }$

②$(3S-5)\vec{ a }+t\vec{ b }=\vec{ 0 }$

③$\vec{ c }=2\vec{ a }+3\vec{ b },\vec{ d }=\vec{ a }+2\vec{ b }$のとき、$5\vec{ a }+4\vec{ b }=S\vec{ c }+t\vec{ d }$
この動画を見る 

【基礎から解説】ベクトルをほかのベクトルで表す(高校数学B)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
平行四辺形$ABCD$において、対角線の交点を$E$、辺$CD$上の点で$CF:FD=2:3$を満たす点を$F$とする。
$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AD }=\vec{ d },\overrightarrow{ AE }=\vec{ e },\overrightarrow{ AF }=\vec{ f }$とするとき、$\vec{ b },\vec{ d }$を$\vec{ e },\vec{ f }$を用いて表せ。
この動画を見る 
PAGE TOP