【数Ⅱ】三角関数:関数y=-sin²θ+cosθ(0≦θ<2π)の最大値と最小値を求めよう。その時のθも求めよう。 - 質問解決D.B.(データベース)

【数Ⅱ】三角関数:関数y=-sin²θ+cosθ(0≦θ<2π)の最大値と最小値を求めよう。その時のθも求めよう。

問題文全文(内容文):
関数$y=-\sin^2\theta+\cos\theta(0≦\theta<2\pi)$の最大値と最小値を求めよう。その時の$\theta$も求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:12 sinかcosに統一する
0:54 2次関数の最大最小の考え方
2:18 名言

単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$y=-\sin^2\theta+\cos\theta(0≦\theta<2\pi)$の最大値と最小値を求めよう。その時の$\theta$も求めよう。
投稿日:2021.04.02

<関連動画>

福田の数学〜立教大学2021年経済学部第1問(2)〜円に内接する四角形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)円Cに内接する四角形PQRSにおいて、対角線PRは円Cの中心Oを通る。
また、各辺の長さは、$PQ=1, QR=8, RS=4, SP=7$であり、
角Pの大きさを$\theta$とする。ただし、$0 \lt \theta \lt \pi$とする。
このとき円Cの直径は$\boxed{イ},\cos\theta=\boxed{ウ}$である。

2021立教大学経済学部過去問
この動画を見る 

福田のおもしろ数学122〜どれがどれですか?該当する関数を見つけてください

アイキャッチ画像
単元: #数Ⅱ#三角関数#指数関数と対数関数#三角関数とグラフ
指導講師: 福田次郎
問題文全文(内容文):
$\begin{array}{|c|c|c|c|}
\hline
x & a & b & c\\ \hline
f_1(x) & 0.980 & 0.921 & 0.825 \\ \hline
f_2(x) & 0.063 & 0.251 & 0.565 \\ \hline
f_3(x) & 0.803 & 0.644 & 0.517 \\ \hline
f_4(x) & 0.199 & 0.389 & 0.565 \\ \hline
\end{array}$
上の数表において、$f_1(x)$, $f_2(x)$, $f_3(x)$, $f_4(x)$は関数
$\sin x$, $\cos x$, $\frac{\pi}{2}x^2$, $3^{-x}$
のうちのどれかである。どれがどれか?
ただし、$a$, $b$, $c$は0<$a$<$b$<$c$<$\frac{\pi}{2}$, $b$=$\frac{a+c}{2}$ を満たし、数値はどれも小数第4位を四捨五入してある。
この動画を見る 

福田の数学〜九州大学2025文系第2問〜円周上の2点との距離の2乗の和の最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#三角関数#三角関数とグラフ#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

半径$1$の円周$C$上の$2$点$A,B$は

$AB=\sqrt3$をみたすとする。

点$P$が円周$C$上を動くとき、

$AP^2+BP^2$の最大値を求めよ。

$2025$年九州大学文系過去問題
この動画を見る 

なんやこれ?

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角関数のグラフの説明動画です
この動画を見る 

【高校数学】 数Ⅱ-97 三角関数のグラフ③

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数のグラフと周期を書こう。

①$y=\sin \theta$

②$y=\cos \displaystyle \frac{\theta}{3}$

③$y=\tan3\theta$
この動画を見る 
PAGE TOP