福田のおもしろ数学338〜不定方程式の整数解 - 質問解決D.B.(データベース)

福田のおもしろ数学338〜不定方程式の整数解

問題文全文(内容文):
$a^2+b=b^{2025}$を満たす整数$a,b$を求めて下さい。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a^2+b=b^{2025}$を満たす整数$a,b$を求めて下さい。
投稿日:2024.12.05

<関連動画>

中学生はよく間違えます。ルートを外せ!仙台育英(宮城県)

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{17-a}$の値が整数となる自然数aは何個?
仙台育英学園高等学校
この動画を見る 

整数問題 慶應志木高校2022入試問題解説35問目

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x,y,z:素数
$z=80x^2+2xy - y^2$を満たす(x,y,z)の組のうち、
zが2番目に小さくなるものを求めよ
(x,y,z)=▢

2022慶應義塾志木高等学校
この動画を見る 

素数にならないのはなぜ? 洛星

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$N=n^2+n+40$のnにどのような自然数を代入してもNは素数にはならない。
なぜ?

洛星高等学校(改)
この動画を見る 

【考え方が理解で得意になる!!】合同式がこの一本でできるようになる!プチ演習付き〔数学、高校数学〕

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
合同式について解説します。
この動画を見る 

2021富山大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P\gt 3$,$P$と$P+4$は素数である.
(1)$P$を6で割った余りを示せ.
(2)$P+2$は3の倍数であることを示せ.
(3)$(P+1)(P+2)(P+3)$は$120$の倍数であることを示せ.

2021富山大過去問
この動画を見る 
PAGE TOP