問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (5)\ 次の条件によって定められる数列\left\{a_n\right\}の一般項を求めよ。\\
a_1=-1, a_{n+1}=a_n+2・3^{n-1} (n=1,2,3,\ldots)
\end{eqnarray}
2021中央大学経済学部過去問
\begin{eqnarray}
{\Large\boxed{1}} (5)\ 次の条件によって定められる数列\left\{a_n\right\}の一般項を求めよ。\\
a_1=-1, a_{n+1}=a_n+2・3^{n-1} (n=1,2,3,\ldots)
\end{eqnarray}
2021中央大学経済学部過去問
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (5)\ 次の条件によって定められる数列\left\{a_n\right\}の一般項を求めよ。\\
a_1=-1, a_{n+1}=a_n+2・3^{n-1} (n=1,2,3,\ldots)
\end{eqnarray}
2021中央大学経済学部過去問
\begin{eqnarray}
{\Large\boxed{1}} (5)\ 次の条件によって定められる数列\left\{a_n\right\}の一般項を求めよ。\\
a_1=-1, a_{n+1}=a_n+2・3^{n-1} (n=1,2,3,\ldots)
\end{eqnarray}
2021中央大学経済学部過去問
投稿日:2021.08.20