【高校受験対策】数学-死守5 - 質問解決D.B.(データベース)

【高校受験対策】数学-死守5

問題文全文(内容文):
1.次の計算をしなさい.

①$1-7$

②$(-3)^2\times 2-5\times 3$

③$\dfrac{2}{3}-\dfrac{7}{10}\div \left(-\dfrac{7}{15}\right)$

④$2(x+3y)-(2x-y)$

⑤$\sqrt8+\sqrt6\times \sqrt3$

2,つぎの各問に答えなさい.

⑥$x^2+5x$を因数分解しなさい.

⑦連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-3y=-1 \\
x+6y=13
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑧2次方程式$3^2-5x+1=0$を解きなさい.

⑨$3a+b=10$を$a$について解きなさい.

⑩$15:(x-2)=3:2$であるとき,
$x$の値を求めなさい.
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$1-7$

②$(-3)^2\times 2-5\times 3$

③$\dfrac{2}{3}-\dfrac{7}{10}\div \left(-\dfrac{7}{15}\right)$

④$2(x+3y)-(2x-y)$

⑤$\sqrt8+\sqrt6\times \sqrt3$

2,つぎの各問に答えなさい.

⑥$x^2+5x$を因数分解しなさい.

⑦連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-3y=-1 \\
x+6y=13
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑧2次方程式$3^2-5x+1=0$を解きなさい.

⑨$3a+b=10$を$a$について解きなさい.

⑩$15:(x-2)=3:2$であるとき,
$x$の値を求めなさい.
投稿日:2016.10.31

<関連動画>

【高校受験対策】数学-死守28

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#確率#2次関数#相似な図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(- 4) + 3\times (- 3)$を計算しなさい。

②$\dfrac{2x - 1}{3} - \dfrac{3x + 1}{5}$を計算しなさい。

③$(\sqrt{12} + \sqrt{18})(\sqrt3 - \sqrt2)$を計算しなさい。

④$(x - 4)^ 2 + 2(x - 2) - 3$を因数分解しなさい。

⑤方程式$(x + 3)(x - 5) = 5x - 24$を解きなさい。

⑥次の連立方程式を解きなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x+5=3y-2 \\
3x+2y=16
\end{array}
\right.
\end{eqnarray}$

⑦関数$y=-3x^2$について、
$x$の値が1から3まで増加するときの変化の割合を求めなさい。

⑧1つのさいころを2回投げるとき、1回目に出た目の数が、
2回目に出た目の数の倍数となる確率を求めなさい。

⑨男子20人、好16人のクラスでテストを行ったところ、 男子の平均点が$x$点で、
女子の平均点が$y$点であった。このクラスのテストの合計点は何点か、
$y$を使った式で表しなさい。

⑩三角柱と三角すいがあり、底面は相似な三角形で高さが等しい。
三角柱の底面と三角すいの底面の相似比が$1:2$であるとき、
三角柱の体積は三角すいの体積の何倍か、求めなさい。
この動画を見る 

京都大学 5倍角の公式

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅱ#三角関数#三角関数とグラフ
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$\cos5\theta=f(\cos\theta)$を満たす多項式$f(n)$を求めよ.
(2)$\cos\dfrac{\pi}{10}\cos\dfrac{3\pi}{10}\cos\dfrac{7\pi}{10}\cos\dfrac{9\pi}{10}=\dfrac{5}{16}$を示せ.

1996京都大過去問
この動画を見る 

【高校受験対策/数学】死守64

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#空間図形#確率#文字と式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守64

①$\sqrt{26}\div\sqrt{2}$を計算しなさい

➁$2\sqrt{7} \times 3\sqrt{2}$を計算しなさい。

③$5\sqrt{3}+\sqrt{96}-8\sqrt{6}-\sqrt{27}$を計算しなさい。

④$5 \lt \sqrt{a} \leqq 6$を満たす整数$a$の個数を求めなさい。

⑤3点$A(2,1)$、$B(6,-5)$、$C(k,10)$が一直線上にあるとき、$k$の値を求めなさい。

⑥右の表は、あるクラスの女子20人の握力の記録を度数分布表にまとめたものです。
この20人の記録の平均値を求めなさい。

⑦大、小2個のさいころを同時に投げるとき、大きいさいころの出た目の数を$a$、小さいさいころの出た目の数を$b$とします。
このとき$\frac{b}{a}$が整数となる確率を求めなさい。

⑧A地点からB地点に行くのに、A地点から途中にあるC地点までは時速$a$ kmで2時間歩き、C地点からB地点までは時速$b$ kmで3時間歩きました。
このとき平均の速さは時速何kmか、$a$、$b$を用いた式で表しなさい。

⑨右の図は、1辺の長さが9cmの立方体から、頂点Aに集まる 3辺 AB、AD、AEをそれぞれ3等分する点のうち、
頂点Aに近い方の3点、P、Q、Rを通る平面で頂点Aを切り取り、同様に頂点B、C、Dも切り取ったものです。
このとき立体の体積は何㎥か求めなさい。
この動画を見る 

【何を問われているか理解しているか?】計算:鎌倉学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の計算をしなさい.
${{2^3-(-2)^3}}\times{-2^5+(-2)^5}$

鎌倉学園高校過去問
この動画を見る 

福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART1)

アイキャッチ画像
単元: #式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。

チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。

2023京都大学理系過去問
この動画を見る 
PAGE TOP