【高校数学】 数Ⅱ-112 加法定理の応用②・3倍角の公式編 - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-112 加法定理の応用②・3倍角の公式編

問題文全文(内容文):
①$sin3\alpha=3\sin\alpha-4\sin^3\alpha$を証明しよう。

②$cos3\alpha=3\cos\alpha-4\cos^3\alpha$を証明しよう。
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$sin3\alpha=3\sin\alpha-4\sin^3\alpha$を証明しよう。

②$cos3\alpha=3\cos\alpha-4\cos^3\alpha$を証明しよう。
投稿日:2015.08.28

<関連動画>

【数学II】三角関数_これで共テ瞬殺!【三角関数のイメージ】【共通テスト】

アイキャッチ画像
単元: #三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1)
$0^{ \circ } \lt \theta \lt 180^{ \circ }$
$\tan \theta =-2$
$\sin \theta,\cos \theta$は?

(2)
$0 \leqq \theta \lt 2 \pi$
$\cos \theta \lt \displaystyle \frac{\sqrt{ 3 }}{2}$を解け

(3)
$0 \lt \theta \leqq 2 \pi$
$\sin \theta \geqq \displaystyle \frac{1}{2}$を解け

(4)
$0 \leqq \theta \lt 2 \pi$
$\sin \theta + \sqrt{ 3 } \cos \theta =\sqrt{ 2 }$を解け

(5)
$0 \leqq x \leqq \pi$とする
$y=2 \sin 2x-2(\sin x- \cos x)+1$
のとり得る値の範囲は?

(6)
$f(x)=\sin x - \cos 2x$の
$0 \leqq x \leqq \pi$における
max、minを求めよ
この動画を見る 

sin cos

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 数学を数楽に
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第1問(3)〜三角関数の最大最小の種類

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(3)関数$f(\theta)=\cos2\theta+2\cos\theta$が
$0 \leqq \theta \leqq \pi$ の範囲で最小値をとるのは$\theta=\boxed{\ \ ア\ \ }$
のときであり、最大値を取るのは$\theta=\boxed{\ \ イ\ \ }$のときである。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

九州大 良問再投稿 合成公式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sin 10^{ \circ }$は$8x^3-6x+1=0$の解であることを示し、他の2解も求めよ

出典:1975年九州大学 過去問
この動画を見る 

【高校数学】加法定理③~三角関数の合成~ 4-14【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【三角関数の合成】

a sinθ+b cosθ=$\sqrt{ \mathstrut a²+b² }$sin(θ+α)(=r sin(θ+α))
ただし、sinα=$\displaystyle \frac{b}{ \sqrt{a²+b²} }$,cos α=$\displaystyle \frac{a}{ \sqrt{a²+b²} }$,r=$\sqrt{ \mathstrut a²+b² }$である。

(1) 三角関数を合成せよ
sinθ+$\sqrt{ \mathstrut 3 }$cosθ

(2) 0≦x<2πのとき、次の方程式を解け
sin x-$\sqrt{ \mathstrut 3 }$cosx=1
この動画を見る 
PAGE TOP