福田の数学〜早稲田大学理工学部2025第5問〜無理関数のグラフ上に無数の有理点が存在する証明 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学理工学部2025第5問〜無理関数のグラフ上に無数の有理点が存在する証明

問題文全文(内容文):

$\boxed{5}$

$xy$平面上の曲線$C:y=\sqrt[3]{x^2+2}$と考え、

$C$上の$(0,\sqrt[3]{2})$以外の点$P(a,b)$における接線を

$\ell : y = kx +c$と表す。$C$と$\ell$の方程式から

$x$を消去して得られる$y$についての$3$次方程式

$f(y)=0$は$b$を重解としてもつので、もう$1$つの解を

$b'$とする。

ただし、$b'$が$3$重解のときは$b'=b$とみなす。

次の問いに答えよ。

(1)$2b+b'$を$k$のみの分数式で表せ。

(2)$b'$を$b$のみの分数式で表せ。

(3)$C$と$\ell$の共有点で、その$y$座標が$b'$であるものを

$P'(a',b')$とする。

$a$と$b$が有理数ならば、$a'$と$b'$も有理数であることを

示せ。

(4)$b$が奇数$p,q$と負でない整数$r$を用いて

$b=\dfrac{p}{2^r q}$で与えられるとする。

有理数$b'$を奇数$p',q'$と整数$s$を用いて$b'=\dfrac{p'}{2^s q'}$と

表すとき、$s$を$r$の式で表せ。

(5)$P(5,3)$が曲線$C$上の点であることを利用して、

$C$上に$x$座標と$y$座標がともに有理数であるような点が

無数に存在することを示せ。

$2025$年早稲田大学理工学部過去問題
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$xy$平面上の曲線$C:y=\sqrt[3]{x^2+2}$と考え、

$C$上の$(0,\sqrt[3]{2})$以外の点$P(a,b)$における接線を

$\ell : y = kx +c$と表す。$C$と$\ell$の方程式から

$x$を消去して得られる$y$についての$3$次方程式

$f(y)=0$は$b$を重解としてもつので、もう$1$つの解を

$b'$とする。

ただし、$b'$が$3$重解のときは$b'=b$とみなす。

次の問いに答えよ。

(1)$2b+b'$を$k$のみの分数式で表せ。

(2)$b'$を$b$のみの分数式で表せ。

(3)$C$と$\ell$の共有点で、その$y$座標が$b'$であるものを

$P'(a',b')$とする。

$a$と$b$が有理数ならば、$a'$と$b'$も有理数であることを

示せ。

(4)$b$が奇数$p,q$と負でない整数$r$を用いて

$b=\dfrac{p}{2^r q}$で与えられるとする。

有理数$b'$を奇数$p',q'$と整数$s$を用いて$b'=\dfrac{p'}{2^s q'}$と

表すとき、$s$を$r$の式で表せ。

(5)$P(5,3)$が曲線$C$上の点であることを利用して、

$C$上に$x$座標と$y$座標がともに有理数であるような点が

無数に存在することを示せ。

$2025$年早稲田大学理工学部過去問題
投稿日:2025.04.24

<関連動画>

三角関数の基本 合成公式 図書館情報大

アイキャッチ画像
単元: #数Ⅱ#三角関数#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt3\sin 2x+2\sin^2x-1$,$0\leqq x\lt \pi$における最大値,最小値を求めよ.

1985図書館情報大過去問
この動画を見る 

複素関数論⑧ 逆関数 高専数学 *25(1)-(4), *26

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
複素関数論⑧ 逆関数に関して解説します.
この動画を見る 

福田のわかった数学〜高校3年生理系090〜グラフを描こう(12)無理関数、凹凸、漸近線

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう。(12)
$y=\sqrt[3]{x^3-x^2}$ のグラフを描け。ただし凹凸、漸近線も調べよ。
この動画を見る 

【高校数学】数Ⅲ-62 合成関数①

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$y$が$u$の関数で$y=g(u)$と表され、$u$が$x$の関数で$u=f(x)$と表されるとき、
$y$は$x$の関数で$y=g(f(x))$と表され、これを$f$と$g$の合成関数という。
また、$y=g(f(x))$を$y=①$と表す。

②$f(x)= 4x ^ 2 、g(x) = -\dfrac{1}{2} (x + 1)$であるとき、
合成関数$(gof)(x)、(fog)(x)$をそれぞれ求めなさい。
この動画を見る 

福田のおもしろ数学193〜マイナス無限大への極限はこわい

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \lim_{x \to - \infty} \frac{\sqrt{9x^6-x}}{x^3+6}$ を求めよ。
この動画を見る 
PAGE TOP