16京都府教員採用試験(数学:高1番 積分) - 質問解決D.B.(データベース)

16京都府教員採用試験(数学:高1番 積分)

問題文全文(内容文):
1⃣(高)
$2(\sqrt{n+1}-1)<1+\frac{1}{\sqrt 2}+\cdots +\frac{1}{\sqrt n}$を示せ
$n \in \mathbb{ N }$
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
1⃣(高)
$2(\sqrt{n+1}-1)<1+\frac{1}{\sqrt 2}+\cdots +\frac{1}{\sqrt n}$を示せ
$n \in \mathbb{ N }$
投稿日:2020.08.21

<関連動画>

大学入試問題#388「大学名に再生回数を託してみた」 #福島県立医科大学2009 #部分積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{\tan^2x}{\cos^2x} dx$

出典:2009年福島県立医科大学 入試問題
この動画を見る 

大学入試問題#674「もう飽きてきました」日本大学医学部(2006)

アイキャッチ画像
単元: #大学入試過去問(数学)#定積分#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{x\ \sin\ x}{3+\sin^2\ x} dx$

出典:2006年日本大学医学部 入試問題
この動画を見る 

大学入試問題#319 電気通信大学(2010) #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ a \to \infty }\displaystyle \int_{0}^{a}\displaystyle \frac{1}{1+e^x}dx$

出典:2010年電気通信大学 入試問題
この動画を見る 

【最後の足し算で計算ミスしてます。】大学入試問題#334 広島市立大学(2011) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^2+1}{x+1}dx$

出典:2011年広島市立大学 入試問題
この動画を見る 

大学入試問題#616「これは理系が解くと逆にはまるかも」 名古屋大学(1963)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#名古屋大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x \gt y$とする
$x+y=6,\ xy=4$のとき
$\displaystyle \frac{\sqrt{ x }-\sqrt{ y }}{\sqrt{ x }+\sqrt{ y }}$の値を求めよ。

出典:1963年名古屋大学 入試問題
この動画を見る 
PAGE TOP