福田のわかった数学〜高校2年生044〜軌跡(11)中点の軌跡(2) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生044〜軌跡(11)中点の軌跡(2)

問題文全文(内容文):
数学$\textrm{II}$ 軌跡(11) 中点の軌跡(2)
円$x^2+y^2=1$ と直線$y=m(x-2)$が
異なる2点A,Bで交わるとき、
線分ABの中点Mの軌跡を求めよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 軌跡(11) 中点の軌跡(2)
円$x^2+y^2=1$ と直線$y=m(x-2)$が
異なる2点A,Bで交わるとき、
線分ABの中点Mの軌跡を求めよ。
投稿日:2021.08.06

<関連動画>

熊本大 三次方程式の解の配置

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-px^2+(p^2-2p)x+q=0$が負の解を1つと異なる正の解2つもつような整数$p,q$を求めよ.

2018熊本大過去問
この動画を見る 

#茨城大学(2022) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{18}}^{\frac{\pi}{9}} \sin^23x\ dx$

出典:2022年茨城大学
この動画を見る 

放物線 栃木県(改) 正答率5%!?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
Aのx座標=?
*図は動画内参照

栃木県(改)
この動画を見る 

福田の数学〜中央大学2024経済学部第1問(6)〜定積分で表された関数

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
関数 $f(x)$ は
$\displaystyle f(x)=x^2 \int^{2}_{0} f'(t) dt +Ax, \quad f(1)=1$
を満たしている。ただし、$A$ は定数である。このとき、$f(x)$ が最大になる $x$ を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第6問〜領域における最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$ ある国の有識者会議が、経済活性化に資する公共サービスの$供給量x$と、医療・
公衆衛生に関する公共サービスの$供給量y$の組み合わせの検討を行っている。$供給量
(x,y)$は、予算やマンパワー、既存の法律など、さまざまな要因により、その実現可能性
に制約を受け、次の不等式を満たすものとする。
$\left\{\begin{array}{1}
2x+5y \leqq 405 \ldots(1)\\
x^2+75y \leqq 6075 \ldots(2)\\
x \geqq 0 \ldots(3)\\
y \geqq 0 \ldots(4)\\
\end{array}\right.$

$供給量(x,y)$を$x軸$と$y軸$の$2次元座標$で表すと、実現可能な供給量の組合せ$(x,y)$の値域は、$0 \leqq x \leqq \boxed{\ \ アイ\ \ }$の範囲で$(1)$と$(4)$を満たす$(x,y)$の部分の領域と、
$\boxed{\ \ アイ\ \ } \leqq x \leqq \sqrt{\boxed{\ \ オカ\ \ }}$の範囲で$(2)$と$(4)$を満たす$(x,y)$の部分の領域の$2$つ
からなることがわかる。
いま、有識者会議の目標が$xy$の最大化であるとすると、供給量の組合せを
$(x,y)=(\boxed{\ \ キク\ \ },\boxed{\ \ ケコ\ \ })$とする結論を得る。
次に、情勢の変化に伴って、上記の$(1),(2),(3),(4)$に新たな不等式
$x+y \leqq 93  \ldots(5)$
が加わったとすると、実現可能な$(x,y)$の領域は、$0 \leqq x \leqq \boxed{\ \ サシ\ \ }$の範囲で
$(1)と(4)$を満たす$(x,y)$の部分の領域と、$\boxed{\ \ サシ\ \ } \leqq x \leqq \boxed{\ \ スセ\ \ }$の範囲で
$(5)と(4)$を満たす$(x,y)$の部分の領域と、$\boxed{\ \ スセ\ \ } \leqq x \leqq \boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}$の範囲で
$(2)と(4)$を満たす$(x,y)$の部分の領域の$3つ$に分けることができる。
また、政府の方針にそって、有識者会議の目標が$x^2y$の最大化に変更されたとすると、
供給量の組合せを
$(x,y)=(\boxed{\ \ ソタ\ \ },\boxed{\ \ チツ\ \ })$
とする結論を導くことになる。

2021慶應義塾大学環境情報学部過去問
この動画を見る 
PAGE TOP