福田のわかった数学〜高校2年生044〜軌跡(11)中点の軌跡(2) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生044〜軌跡(11)中点の軌跡(2)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(11) 中点の軌跡(2)\\
円x^2+y^2=1 と直線y=m(x-2)が\\
異なる2点A,Bで交わるとき、\\
線分ABの中点Mの軌跡を求めよ。
\end{eqnarray}
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(11) 中点の軌跡(2)\\
円x^2+y^2=1 と直線y=m(x-2)が\\
異なる2点A,Bで交わるとき、\\
線分ABの中点Mの軌跡を求めよ。
\end{eqnarray}
投稿日:2021.08.06

<関連動画>

福田のわかった数学〜高校2年生041〜軌跡(8)媒介変数表示の軌跡(1)

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(8) 媒介変数表示(1)\\
\left\{\begin{array}{1}
x=2\cos\theta+\sin\theta\\
y=\cos\theta-2\sin\theta
\end{array}\right.  
(0 \leqq \theta \leqq \pi)\\
を満たす(x,y)の軌跡を図示せよ。\\
また、0 \leqq \theta \leqq \frac{3}{2}\piのときはどうか。
\end{eqnarray}
この動画を見る 

三角関数 数 三角関数の不等式2【NI・SHI・NOがていねいに解説】

単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0\leqq θ\lt 2π$のとき,次の不等式を解け。
(1) $\sin (θ+\displaystyle \frac{π}{4})\leqq \displaystyle \frac{\sqrt{3}}{2}$

(2) $\tan (θ-\displaystyle \frac{π}{6})\gt 1$

(3) $\cos (θ-\displaystyle \frac{π}{3})\lt -\displaystyle \frac{\sqrt{3}}{2}$

(4) $\tan (θ+\displaystyle \frac{π}{6})\geqq -\sqrt{3}$
この動画を見る 

福田のわかった数学〜高校3年生理系100〜不等式の証明(7)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(7)\\
e^a(b-a) \lt e^b-e^a \lt e^b(b-a)\\
(ただし、a \lt b)
\end{eqnarray}
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第1問(1)〜解と係数の関係と3次関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#解と判別式・解と係数の関係#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(1)mを実数とする。xについての2次方程式$x^2-(m+3)x+m^2-9=0$の
二つの解を$α,β$とする。$α,β$が実数であるための必要十分条件は$- \boxed{ア} \leqq m \leqq \boxed{イ}$である。
mが$- \boxed{ア} \leqq m \leqq \boxed{イ}$の範囲を動くときの
$α^3+β^3$の最小値は$\boxed{ウ}$、最大値は$\boxed{エオカ}$である。
この動画を見る 

福田の数学〜東京医科歯科大学2022年理系第1問〜2つのベクトルで生成される異なる点の個数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#平面上のベクトル#場合の数#三角関数#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ nを自然数とする。整数i,jに対し、xy平面上の点P_{i,j}の座標を\\
(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)\\
で与える。さらに、i,jを動かしたとき、P_{i,j}の取り得る異なる座標の\\
個数をS_nとする。このとき、以下の問いに答えよ。\\
(1)n=3のとき、\triangle P_{0,0}P_{0,1}P_{0,2}および\triangle P_{1,0}P_{1,1}P_{1,2}を同一平面上\\
に図示せよ。\\
(2)S_4を求めよ。\\
(3)平面上の異なる2点A,Bに対して、AQ=BQ=1であるような\\
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。\\
(4)S_nをnを用いて表せ。
\end{eqnarray}

2022東京医科歯科大学理系過去問
この動画を見る 
PAGE TOP