福田のおもしろ数学486〜1分チャレンジ!無理数の計算 - 質問解決D.B.(データベース)

福田のおもしろ数学486〜1分チャレンジ!無理数の計算

問題文全文(内容文):

$x=\dfrac{\sqrt6+\sqrt2+\sqrt3+2}{\sqrt6-\sqrt2+\sqrt3-2},$

$y=\dfrac{\sqrt6+\sqrt2-\sqrt3-2}{\sqrt6-\sqrt2-\sqrt3+2}$

のとき$x^5+y^5$の値を求めて下さい。
    
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$x=\dfrac{\sqrt6+\sqrt2+\sqrt3+2}{\sqrt6-\sqrt2+\sqrt3-2},$

$y=\dfrac{\sqrt6+\sqrt2-\sqrt3-2}{\sqrt6-\sqrt2-\sqrt3+2}$

のとき$x^5+y^5$の値を求めて下さい。
    
投稿日:2025.05.02

<関連動画>

18和歌山県教員採用試験(数学:4番 無理数の証明)

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$2^x=5$をみたす実数$x$は
無理数であることを示せ.
この動画を見る 

【高校数学】  数Ⅰ-55  2次方程式②

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$2x^2-5x+1=0$
②$x^2+2x-4=0$
③$\sqrt{ 2 }x^2-4x+2\sqrt{ 2 }=0$
④$(x+2)^2+4(x+2)-1=0$
この動画を見る 

【用語の違いは何!?】苦手な人が多い有理数と無理数、有限小数、循環小数の違いを簡単に解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
中学3年生 数学
有理数と無理数、有限小数、循環小数の違いについて解説します。
この動画を見る 

「三角比(方程式と不等式)」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の三角方程式、不等式を解け。
ただし、$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$とする。
(1)
$\cos\theta=\displaystyle \frac{1}{2}$
$\theta=60^{ \circ }$

(2)
$\sin\theta=\displaystyle \frac{1}{\sqrt{ 2 }}$
$\theta=45^{ \circ },135^{ \circ }$

(3)
$\tan\theta=\displaystyle \frac{1}{\sqrt{ 3 }}$
$\theta=150^{ \circ }$

(4)
$2\cos\theta+\sqrt{ 3 }=0$
$\cos\theta=-\displaystyle \frac{\sqrt{ 3 }}{2}$より
$\theta=150^{ \circ }$

(5)
$\sqrt{ 3 }\tan\theta-3=0$
$\tan\theta=\sqrt{ 3 }$より
$\theta=60^{ \circ }$

(6)
$2\sin^2\theta-5\cos\theta+1=0$
$2(1-\cos^2\theta)-5\cos\theta+1=0$
$2\cos^2\theta+5\cos\theta-3=0$
$-1 \leqq \cos\theta \leqq 1$より$\cos\theta+3=0$
したがって$2\cos\theta-1=0$
$\cos\theta=\displaystyle \frac{1}{2}$より$\theta=60^{ \circ }$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題024〜名古屋大学2016年度理系数学第1問〜垂直条件と解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#図形と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
曲線$y=x^2$上に2点$A(-2,4),B(b,b^2)$をとる。ただし、$b \gt -2$とする。
このとき、次の条件を満たすbの範囲を求めよ。
条件:$y=x^2$上の点$T(t,t^2)(-2 \lt t \lt b)$で、$\angle ATB$が直角になるものが
存在する。

2016名古屋大学理系過去問
この動画を見る 
PAGE TOP