問題文全文(内容文):
$a_n \gt 0,a_1=3$
$S_{n+1}+S_n=\displaystyle \frac{1}{3}(S_{n+1}-S_n)^2$
$a_n,S_n$を求めよ
出典:2013年宇都宮大学 過去問
$a_n \gt 0,a_1=3$
$S_{n+1}+S_n=\displaystyle \frac{1}{3}(S_{n+1}-S_n)^2$
$a_n,S_n$を求めよ
出典:2013年宇都宮大学 過去問
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#宇都宮大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n \gt 0,a_1=3$
$S_{n+1}+S_n=\displaystyle \frac{1}{3}(S_{n+1}-S_n)^2$
$a_n,S_n$を求めよ
出典:2013年宇都宮大学 過去問
$a_n \gt 0,a_1=3$
$S_{n+1}+S_n=\displaystyle \frac{1}{3}(S_{n+1}-S_n)^2$
$a_n,S_n$を求めよ
出典:2013年宇都宮大学 過去問
投稿日:2020.01.04