【数A】確率:感覚でわかる反復試行 - 質問解決D.B.(データベース)

【数A】確率:感覚でわかる反復試行

問題文全文(内容文):
コインを10回投げる問題に関して解説していきます.
チャプター:

0:00 本編開始

単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
コインを10回投げる問題に関して解説していきます.
投稿日:2022.06.07

<関連動画>

サイコロの確率の問題!注意点があります【数学 入試問題】【九州大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
4個のサイコロを同時に投げるとき,出る目すべての積を$X$とする。

(1)$X$が25の倍数になる確率を求めよ。
(2)$X$が4の倍数になる確率を求めよ。
(3)$X$が100の倍数になる確率を求めよ。

九州大過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第2問〜確率と極限

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ (1)2n個の玉があり、そのうちk個は赤、他は白とする。ただしn>k>1である。\\
また袋A, Bが用意されているとする。\\
(1) 2n 個の玉からn個を無作為に選んで袋Aに入れ、残りを袋Bに入れる。袋A\\
にi個 (0 \leqq i \leqq k) の赤玉が入る確率を p(n, k, i) とおく。kとiを固定してn \to \infty\\
とするときの p(n, k, i) の極限値をkとiの式で表すと \lim_{n \to \infty} p(n, k, i) =\boxed{\ \ ア\ \ } \\
となる。またn>3のとき p(n, 3, 1) = \boxed{\ \ イ\ \ }である。\\
以下、n>k=3として、袋Aに赤玉が1個、袋Bに赤玉が2個入っている状態を\\
状態Sと呼ぶ。また袋A, Bのそれぞれから同時に玉を1個ずつ無作為に取り出し\\
て、玉が入っていた袋と逆の袋に入れる操作を操作Tと呼ぶ。\\
(2) 状態 Sから始めて操作を1回行った後で袋Aから玉を1個無作為に取り出す \\
とき、取り出した玉が赤玉である確率は\boxed{\ \ ウ\ \ }である。また、取り出した玉が赤玉\\
だったとき、操作 T終了後に袋Aに赤玉が2個入っていた条件つき確率は\boxed{\ \ エ\ \ }\\
である。\\
(3)状態Sから始めて操作Tを3回繰り返し行った後に、袋Aに赤玉が3個入っている\\
確率は\boxed{\ \ オ\ \ }である。\\
(4)状態Sから初めて袋A,Bのそれぞれから同時に玉を3個ずつ無作為に取り出して、\\
それらを玉が入っていた袋と逆の袋に入れた後に、袋Aに赤玉が3個入っている\\
確率は\boxed{\ \ カ\ \ }である。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題057〜慶應義塾大学大学2019年度商学部第3問〜グループ分けの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 男子7人、女子5人の12人の中から3人を選んで第1グループを作る。次に、残った人の中から3人を選んで第2グループを作る。
(1)第1グループの男子の数が
0人である確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イウ\ \ }}$
1人である確率は$\displaystyle\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オカ\ \ }}$
2人である確率は$\displaystyle\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}$
3人である確率は$\displaystyle\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シス\ \ }}$
である。

(2)第1グループも第2グループも男子の数が1人である確率は$\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソタ\ \ }}$である。また、第2グループの男子の数が1人である確率は$\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツテ\ \ }}$である。

(3)第2グループの男子の数が1人であるとき、第1グループの男子の数も1人である確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナニ\ \ }}$である。

2019慶應義塾大学商学部過去問
この動画を見る 

【高校数学】順列~理解すれば怖くない~ 1-6【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
順列についての説明動画です
この動画を見る 

福田のわかった数学〜高校1年生075〜場合の数(14)道順(1)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(14) 道順(1)\hspace{100pt}\\
右の街路図(※動画参照)を点Aから出発して3回だけ曲がってBへ\\
到達する最短経路は何通りあるか。
\end{eqnarray}
この動画を見る 
PAGE TOP