山口大 1の十乗根の問題 - 質問解決D.B.(データベース)

山口大 1の十乗根の問題

問題文全文(内容文):
$
\begin{eqnarray}
&&2023山口大\\
&&2Z^4+(1-\sqrt{5})Z^2+2=0\\
&&①Z^{10}=1 を示せ\\
&&②Z+Z^3+Z^5+Z^7+Z^9の値\\
&&③\cos\frac{\pi}{5}\cos\frac{2\pi}{5} = \frac{1}{4}を示せ

\end{eqnarray}
$
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
&&2023山口大\\
&&2Z^4+(1-\sqrt{5})Z^2+2=0\\
&&①Z^{10}=1 を示せ\\
&&②Z+Z^3+Z^5+Z^7+Z^9の値\\
&&③\cos\frac{\pi}{5}\cos\frac{2\pi}{5} = \frac{1}{4}を示せ

\end{eqnarray}
$
投稿日:2023.10.14

<関連動画>

【短時間でマスター!!】複素数の計算を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
数学2B
①$(3-2i)+(2+5i)$
②$(3-2i)-(2+5i)$
③$(3-2i)(2+5i)$
$a+bi$の形にせよ。
①$\frac{1+3i}{3+i}$
②$\frac{1+2i}{3i}$
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜ド・モアブルの定理(1)

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$z+\displaystyle \frac{1}{z}=-1$ のとき $z^{100}+\displaystyle \frac{1}{z^{100}}$ の値を求めよ。
この動画を見る 

福田の数学〜中央大学2023年理工学部第1問〜複素数平面と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#複素数平面#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ さいころを2回ふって出た目の数を順に$a$, $b$とし、複素数$\alpha$, $\beta$を
$\alpha$=$\displaystyle\cos\frac{a\pi}{3}$+$\displaystyle i\sin\frac{a\pi}{3}$, $\beta$=$\displaystyle\cos\frac{b\pi}{3}$+$\displaystyle i\sin\frac{b\pi}{3}$
と定める($i$は虚数単位)。また、$\alpha$-$\beta$の絶対値を$d$=|$\alpha$-$\beta$|とおく。
(1)$d$のとりうる値は、小さいものから順に0, $\boxed{\ \ ア\ \ }$, $\boxed{\ \ イ\ \ }$, $\boxed{\ \ ウ\ \ }$である。
$d$=0, $\boxed{\ \ ア\ \ }$, $\boxed{\ \ イ\ \ }$, $\boxed{\ \ ウ\ \ }$が成り立つ確率はそれぞれ$\boxed{\ \ エ\ \ }$, $\boxed{\ \ オ\ \ }$, $\boxed{\ \ カ\ \ }$, $\boxed{\ \ キ\ \ }$である。
(2)$\alpha$-$\beta$が実数となる確率は$\boxed{\ \ ク\ \ }$であり、$\alpha$-$\beta$が実数という条件の下で$d$<$\boxed{\ \ ウ\ \ }$が成り立つ条件付き確率は$\boxed{\ \ ケ\ \ }$である。
(3)$\alpha^2$=$\beta^3$という条件の下で$\alpha+\beta$の虚部が正となる条件付き確率は$\boxed{\ \ コ\ \ }$である。
この動画を見る 

2023藤田医科大 1の7乗根の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\piのとき
Z^7=\Box
Z^6+Z^5+Z^4+Z^3+Z^2+Z=\Box
(1-Z)(1-Z^2)(1-Z^3)×(1-Z^4)(1-Z^5)(1-Z^6)=\Box
\Boxを答えよ.$
この動画を見る 

Euler's formula 中学生の知識でオイラーの公式を理解しよう 最終回

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学の地域でオイラーの公式を解説していきます.
この動画を見る 
PAGE TOP