福田の数学〜北里大学2022年医学部第1問(2)〜逆関数と方程式の解 - 質問解決D.B.(データベース)

福田の数学〜北里大学2022年医学部第1問(2)〜逆関数と方程式の解

問題文全文(内容文):
1 (2) f(x) = log (x/1-x) とする。
関数f(x) の逆関数は f^-1 (x) = [エ]である。
方程式f^-1 (x) - a=0が実数解をもつとき、 定数aのとり得る値の範囲は[オ]である。
方程式 {f^-1(x)}²-bf^-1 (x)-3b=0が実数解をもつとき、 定数 bのとり得る値の範囲は[カ]である。

2022北里大学医学部過去問
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
1 (2) f(x) = log (x/1-x) とする。
関数f(x) の逆関数は f^-1 (x) = [エ]である。
方程式f^-1 (x) - a=0が実数解をもつとき、 定数aのとり得る値の範囲は[オ]である。
方程式 {f^-1(x)}²-bf^-1 (x)-3b=0が実数解をもつとき、 定数 bのとり得る値の範囲は[カ]である。

2022北里大学医学部過去問
投稿日:2022.10.26

<関連動画>

福田の数学〜大阪大学2022年理系第4問〜漸化式とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ f(x)=\log(x+1)+1とする。以下の問いに答えよ。\\
(1)方程式f(x)=xは、x \gt 0の範囲でただ1つの解を\\
もつことを示せ。\\
(2)(1)の解を\alphaとする。実数xが0 \lt x \lt \alphaを満たすならば、\\
次の不等式が成り立つことを示せ。\\
0 \lt \frac{\alpha-f(x)}{\alpha-x} \lt f'(x)\\
(3)数列\left\{x_n\right\}を\\
x_1=1, x_{n+1}=f(x_n) (n=1,2,3,\ldots\ldots)\\
で定める。このとき、全ての自然数nに対して\\
\alpha -x_{n+1} \lt \frac{1}{2}(\alpha -x_n)\\
が成り立つことを示せ。\\
(4)(3)の数列\left\{x_n\right\}について、\lim_{n \to \infty}x_n=\alphaを示せ。
\end{eqnarray}

2022大阪大学理系過去問
この動画を見る 

東大 入試問題 天才ヨビノリのたくみさんが解説 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京大学1990
$a_n=\displaystyle\sum_{k=1}^n\frac{1}{\sqrt k}$,$b_n=\displaystyle\sum_{k=1}^n\frac{1}{\sqrt {2k+1}}$
とするとき、$\displaystyle\lim_{n \to \infty}a_n,\displaystyle\lim_{n \to \infty}\frac{b_n}{a_n}$を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系088〜グラフを描こう(10)分数関数、凹凸、漸近線

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(10)\hspace{50pt}\\
\\
y=\frac{e^x}{x-1}          \\
\\
のグラフを描け。ただし凹凸、漸近線を調べよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系079〜グラフを描こう(1)分数関数のグラフ

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(1)\\
\\
y=\frac{x^2}{x-1}\ のグラフを描け。\\
\\
ただし凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る 

【数Ⅲ】極限:三角関数と極限(sinx/x=1の利用3)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}\dfrac{\sin\left(\dfrac{\sin x}{\pi}\right)}{x}$
この動画を見る 
PAGE TOP