問題文全文(内容文):
$\boxed{1}$
(1)正の実数$a$に対して、円$x^2+(y-a)^2=a^2$と
曲線$y=x^3$がちょうど$2$つの共有点をもつとき、
$a=\boxed{ア}$である。
$2025$年早稲田大学商学部過去問
$\boxed{1}$
(1)正の実数$a$に対して、円$x^2+(y-a)^2=a^2$と
曲線$y=x^3$がちょうど$2$つの共有点をもつとき、
$a=\boxed{ア}$である。
$2025$年早稲田大学商学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(1)正の実数$a$に対して、円$x^2+(y-a)^2=a^2$と
曲線$y=x^3$がちょうど$2$つの共有点をもつとき、
$a=\boxed{ア}$である。
$2025$年早稲田大学商学部過去問
$\boxed{1}$
(1)正の実数$a$に対して、円$x^2+(y-a)^2=a^2$と
曲線$y=x^3$がちょうど$2$つの共有点をもつとき、
$a=\boxed{ア}$である。
$2025$年早稲田大学商学部過去問
投稿日:2025.07.24





