福田の数学〜早稲田大学2025商学部第1問(1)〜方程式の実数解の個数 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2025商学部第1問(1)〜方程式の実数解の個数

問題文全文(内容文):

$\boxed{1}$

(1)正の実数$a$に対して、円$x^2+(y-a)^2=a^2$と

曲線$y=x^3$がちょうど$2$つの共有点をもつとき、

$a=\boxed{ア}$である。

$2025$年早稲田大学商学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)正の実数$a$に対して、円$x^2+(y-a)^2=a^2$と

曲線$y=x^3$がちょうど$2$つの共有点をもつとき、

$a=\boxed{ア}$である。

$2025$年早稲田大学商学部過去問
投稿日:2025.07.24

<関連動画>

【数Ⅱ】三角関数と方程式 1 角のことなる三角関数【倍角の公式を使って角を揃える】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)\sin 2x=\cos x$$(0\leqq x \leqq 2\pi)$
$(2)\sin x+\sqrt3\cos x=1$$(0\leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+7\sin x+3=0$$(0\leqq x\lt 2\pi)$
$(4)\sin^2x+\sin x \cos x-1=0$$(0 \leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x\cos x-1=0$$(0 \leqq x \lt 2\pi)$
この動画を見る 

福田の数学〜浜松医科大学2024医学部第4問〜直線に関する対称点と絶対不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#軌跡と領域#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
正方形の紙 $\alpha$ に下図のように座標軸をとり、 $2$ 点 $\mathrm{A}(0,1),$ $\mathrm{B}(-2,0)$ および、 $2$ 直線 $y=-1,$$x=2$ を定める(図は動画内参照)。以下この $2$ 直線をそれぞれ $l_1,l_2$ と表す。このとき、点 $\mathrm{A}$ を直線 $l_1$ 上の点 $\mathrm{A'}(a,-1)$ に重ねて $\alpha$ を折ったときにできる折り目の直線を $l_3(a)$ とする。ただし、 $\mathrm{A'}$ は $\alpha$ 上にとることとし、また、以下の操作はすべて $\alpha$ 上で行うこととする。以下の問いに答えよ。
$(1)$ 直線 $l_3(a)$ の方程式を、 $a$ を用いて表せ。
$(2)$ 点 $\mathrm{A}$ が直線 $l_1$ 上に位置するように $\alpha$ を折り、そのときできる折り目により、 $\alpha$ を $2$ つに分割する。このとき、点 $\mathrm{A}$ が直線 $l_1$ 上に位置するような、どのような折り方をしても、その折り目に対して常に点 $\mathrm{A}$ と同じ側にある点全体の集合の境界線の方程式を求めよ。
$(3)$ 点 $\mathrm{A}$ が直線 $l_1$ 上の点 $\mathrm{A'}$ に重なると同時に、点 $\mathrm{B}$ が直線 $l_2$ 上の点に重なるように $\alpha$ を折るとき、 $a$ の値を求めよ。
この動画を見る 

12大阪府教員採用試験(数学:1 2 指数の方程式)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(2)$
$10^x=50^{y-1}$を
みたす有理数$x,y$を求めよ.
この動画を見る 

高専数学 微積II #20 極値の判定

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=x \log x$の極値を求めよ.
この動画を見る 

【高校数学】 数Ⅱ-54 点と直線④

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の点の座標を求めよう。

①点A(-2,3)に関して、点B(4,1)と対称な点C

②点(4,3)からの距離が5であるX軸上の点D

③2点(1,-3)、(3,2)から等距離にある、直線$y=2x$上の点E
この動画を見る 
PAGE TOP