大阪大 整数問題 - 質問解決D.B.(データベース)

大阪大 整数問題

問題文全文(内容文):
$p,q$を素数とする.$(p\gt 2q)$
$p^n-4(-q)^n$がすべての自然数$n$で$3$の倍数となる$(p,q)$のうち$pq$を最小のものを求めよ.

大阪大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$を素数とする.$(p\gt 2q)$
$p^n-4(-q)^n$がすべての自然数$n$で$3$の倍数となる$(p,q)$のうち$pq$を最小のものを求めよ.

大阪大過去問
投稿日:2020.12.10

<関連動画>

高知大(医)整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$(p,q)$の組は何個あるか.

①$p^2-q^2=250$
②$p^2-q^2=210000$

2020高知大(医)過去問
この動画を見る 

一橋大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a-b-8$と$b-c-8$がともに素数となるような素数の組$(a,b,c)$を全て求めよ

出典:2014年一橋大学 過去問
この動画を見る 

互いに素の定義は?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数a,bが互いに素なら,$a-b$と$b$も互いに素であることを示せ.$(a \gt b)$


この動画を見る 

【数A】整数の性質:○○でないの証明は背理法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
pが素数のとき、$1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{p}$は整数でないことを証明しよう。
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 7^{n+1}$が19で割り切れるならnは平方数でないことを示せ.
この動画を見る 
PAGE TOP