大阪大 整数問題 - 質問解決D.B.(データベース)

大阪大 整数問題

問題文全文(内容文):
$p,q$を素数とする.$(p\gt 2q)$
$p^n-4(-q)^n$がすべての自然数$n$で$3$の倍数となる$(p,q)$のうち$pq$を最小のものを求めよ.

大阪大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$を素数とする.$(p\gt 2q)$
$p^n-4(-q)^n$がすべての自然数$n$で$3$の倍数となる$(p,q)$のうち$pq$を最小のものを求めよ.

大阪大過去問
投稿日:2020.12.10

<関連動画>

割ると余りと商が等しい 2021西大和学園B

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
自然数Nを49で割ったとき商と余りが等しくなった。
このようなNのうち2021より大きいNの個数は?

2021西大和学園高等学校
この動画を見る 

【整数問題】考えられる候補は何パターンだろうか【慶應義塾大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$6a^{3}+11a^{2}b^{2}c+3ab^{3}c$=6270を満たす(a,b,c)の組をすべて求めよ。
ただし、a,b,cはそれぞれ2以上の整数とする。

慶應義塾大過去問
この動画を見る 

整数問題 説明できる? 数A

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
奇数の2乗から1を引いた数は8の倍数になる。
この動画を見る 

整数問題 履正社 (大阪)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{\frac{900}{n}}$と$\frac{n+2}{9}$がともに自然数となる自然数nのうち最も小さいものは?
履正社高等学校
この動画を見る 

大阪府立大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は整数であり,$0\leqq n\leqq m$とする.

①$3m^2+mn-2n^2$が素数となる($m,n$)
②$m^4-3m^2n^2-4n^4-6m^2-16n^2-16$が素数となる$(m,n)$

2019大阪府立大過去問
この動画を見る 
PAGE TOP