東工大 確率(超簡単)高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

東工大 確率(超簡単)高校数学 Japanese university entrance exam questions

問題文全文(内容文):
2010東京工業大学過去問題
1~nの自然数から任意の2つの数を選んだとき、小さい方の数が3の倍数である確率をP(n)とする。
(1)P(8)を求めよ。
(2)P(3k+2)をkで表せ
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2010東京工業大学過去問題
1~nの自然数から任意の2つの数を選んだとき、小さい方の数が3の倍数である確率をP(n)とする。
(1)P(8)を求めよ。
(2)P(3k+2)をkで表せ
投稿日:2018.04.23

<関連動画>

2つの自然数が互いに素である確率 なぜかアレが出てきます

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
任意の2つの自然数が互いに素である確率を求めよ.
この動画を見る 

福田の数学〜九州大学2023年文系第4問PART2〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
この動画を見る 

17和歌山県教員採用試験(数学:1-(5) 確率)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
サイコロを3回投げ,
出た目を順に$a,b,c$とする.
$abx^2-12x+c=0$が
重解をもつ確率を求めよ.
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第2問〜サイコロの目の積の約数の個数と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}$サイコロをn回投げて出た目の積をSとする。Sの正の約数の個数がk個となる
確率を$P_k$とする。次の問いに答えよ。
(1)$P_3$を$n$の式で表せ。
(1)$P_4$を$n$の式で表せ。

2022早稲田大学教育学部過去問
この動画を見る 

神様の順列で瞬殺

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
52枚のトランプから1枚引いて見ないで伏せる.
残り51枚から3枚引いたら全部♡だった.
伏せた1枚が♡である確率を求めよ.
この動画を見る 
PAGE TOP