大学入試問題#650「3秒クッキング」 藤田医科大学(2020) 定積分 - 質問解決D.B.(データベース)

大学入試問題#650「3秒クッキング」  藤田医科大学(2020) 定積分

問題文全文(内容文):
$\displaystyle \int_{-3}^{3} x(x+\cos^3x) dx$

出典:2020年藤田医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-3}^{3} x(x+\cos^3x) dx$

出典:2020年藤田医科大学 入試問題
投稿日:2023.11.16

<関連動画>

2023早稲田(社)三乗根の計算

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\sqrt[3]{5\sqrt2+7}-\sqrt[3]{5\sqrt2-7}$とする.
(1)$a^3$をaの一次式で表せ.
(2)aは整数であることを示せ.
(3)$b=\sqrt[3]{5\sqrt2+7}-\sqrt[3]{5\sqrt2-7}$とするとき,bを越えない最大の整数を求めよ.

2023早稲田大(社)過去問
この動画を見る 

佐賀大 バーゼル問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
以下を証明せよ
$\displaystyle \frac{1}{1^2}+\displaystyle \frac{1}{3^2}+\displaystyle \frac{1}{5^2}+…+\displaystyle \frac{1}{(2n-1)^2} \lt \displaystyle \frac{3}{2}$

出典:1995年佐賀大学 過去問
この動画を見る 

大学入試問題#233 岡山県立大学(2012) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$a_1=1$
$a_{n+1}=\displaystyle \frac{4}{n}S_n$
一般項$a_n$を求めよ。

出典:2012年岡山県立大学 入試問題
この動画を見る 

数学「大学入試良問集」【19−3 f(sinx)と置換積分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$f(x)$が$0 \leqq x \leqq 1$で連続な関数であるとき
$\displaystyle \int_{0}^{\pi}xf(\sin\ x)dx=\displaystyle \frac{\pi}{2}\displaystyle \int_{0}^{\pi}f(\sin\ x)dx$
が成立することを示し、これを用いて$\displaystyle \int_{0}^{\pi}\displaystyle \frac{x\ \sin\ x}{3+\sin^2x}dx$を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第1問(4)〜不等式に関する文章題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(4)ある業者は、三つの工場A, B, Cから廃棄物を回収し、その中に含まれる三つの金属P, Q, Rを取り出して新たな製品Kを作る。各工場の廃棄物から取り出されるP, Q, Rの量は以下の通りである。
・工場Aの廃棄物10 kgからPが3 kg、Qが5 kg、Rが1 kg取り出される。
・工場Bの廃棄物10 kgからPが1 kg、Qが3 kg、Rが2 kg取り出される。
・工場Cの廃棄物10 kgからPが4 kg、Qが1 kg、Rが1 kg取り出される。
また、Pが2 kgと、Qが2 kgと、Rが1 kgで製品Kが1個作られる。工場A, B, Cから合わせて200 kgの廃棄物が回収できるとき、製品Kをできるだけ多く作るには、工場Aから$\boxed{\ \ ウ\ \ }$ kg、工場Bから$\boxed{\ \ エ\ \ }$ kg、工場Cから$\boxed{\ \ オ\ \ }$ kgの廃棄物を回収すればよく、そのとき製品Kは$\boxed{\ \ カ\ \ }$個作ることができる。
この動画を見る 
PAGE TOP