問題文全文(内容文):
$\boxed{1}$
$k$を実数とする。
$f(x)$と$g(x)$を
$f(x) = \vert x^3-x \vert,\quad g(x)=k(x+1)$
とおき、曲線$y=f(x)$を$C$、
直線$y=g(x)$を$\ell$とする。以下の問いに答えよ。
(1)曲線$C$の概形をかけ。
ただし、関数$f(x)$の極大値を調べる必要はない。
(2)曲線$C$と直線$\ell$がちょうど$4$つの
共有点をもつような$k$の値を求めよ。
$2025$年神戸大学理系過去問題
$\boxed{1}$
$k$を実数とする。
$f(x)$と$g(x)$を
$f(x) = \vert x^3-x \vert,\quad g(x)=k(x+1)$
とおき、曲線$y=f(x)$を$C$、
直線$y=g(x)$を$\ell$とする。以下の問いに答えよ。
(1)曲線$C$の概形をかけ。
ただし、関数$f(x)$の極大値を調べる必要はない。
(2)曲線$C$と直線$\ell$がちょうど$4$つの
共有点をもつような$k$の値を求めよ。
$2025$年神戸大学理系過去問題
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
$k$を実数とする。
$f(x)$と$g(x)$を
$f(x) = \vert x^3-x \vert,\quad g(x)=k(x+1)$
とおき、曲線$y=f(x)$を$C$、
直線$y=g(x)$を$\ell$とする。以下の問いに答えよ。
(1)曲線$C$の概形をかけ。
ただし、関数$f(x)$の極大値を調べる必要はない。
(2)曲線$C$と直線$\ell$がちょうど$4$つの
共有点をもつような$k$の値を求めよ。
$2025$年神戸大学理系過去問題
$\boxed{1}$
$k$を実数とする。
$f(x)$と$g(x)$を
$f(x) = \vert x^3-x \vert,\quad g(x)=k(x+1)$
とおき、曲線$y=f(x)$を$C$、
直線$y=g(x)$を$\ell$とする。以下の問いに答えよ。
(1)曲線$C$の概形をかけ。
ただし、関数$f(x)$の極大値を調べる必要はない。
(2)曲線$C$と直線$\ell$がちょうど$4$つの
共有点をもつような$k$の値を求めよ。
$2025$年神戸大学理系過去問題
投稿日:2025.06.18





