【数Ⅱ】内分の公式・外分の公式を導出から丁寧に【公式を1つだけにする!?】 - 質問解決D.B.(データベース)

【数Ⅱ】内分の公式・外分の公式を導出から丁寧に【公式を1つだけにする!?】

問題文全文(内容文):
$ 数直線上の点A(3),B(6)について,線分ABを3:2に内分する点Pの座標を求めよ.$
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 数直線上の点A(3),B(6)について,線分ABを3:2に内分する点Pの座標を求めよ.$
投稿日:2022.01.31

<関連動画>

【意外とできない人が多い】アポロニウスの円について3分で解説!〔数学、高校数学〕

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
アポロニウスの円について解説します。
2点A(-2,0)と点B(4,0)からの距離の比が2:1であるような点軌跡を求めよ。
この動画を見る 

福田の数学〜東京大学2023年文系第2問〜定積分で表された関数と最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上の放物線y=3$x^2$-4xをCとおき、直線y=2xをlとおく。実数tに対し、C上の点P(t, $3t^2-4t$)とlの距離をf(t)とする。
(1)-1≦a≦2の範囲の実数aに対し、定積分
g(a)=$\displaystyle\int_{-1}^af(t)dt$
を求めよ。
(2)aが0≦a≦2の範囲を動くとき、g(a)-f(a)の最大値および最小値を求めよ。

2023東京大学文系過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜内分・外分公式、高校2年生

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 3点$A(-1,1),B(1,-2),C(5,0)$がある。次の点の座標を求めよ。
(1)線分ABを2:1に内分する点。
(2)線分CAを2:1に外分する点。
(3)線分BCの中点。
(4)$\triangle$ ABCの重心。
(5)4点A,B,C,Dが平行四辺形の4つの頂点になるような点D。
この動画を見る 

【高校受験対策】数学-死守18

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#平方根#2次方程式#比例・反比例#確率#点と直線
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$15 - 9\div 3$を計算しなさい.

②$\dfrac{2}{7}\times \dfrac{3}{4}$を計算しなさい .

③$-5-3+7$を計算しなさい.

④$(3x - 2y) + 5(x - 4y)$ を計算しなさい.

⑤$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=2 \\
x+2y=-6
\end{array}
\right.
\end{eqnarray}$
を解きなさい.

⑦$\sqrt{15}\times \sqrt6 +\sqrt{10}$を計算しなさい.

⑧$x^2-2x-63$を因数分解しなさい.

⑧方程式$ 2x ^ 2 + 9x + 8 = 0$ を解きなさい.

⑨右の図のように,平行な2直線$\ell,m$があり,直線上に2点$A,B$
直線$m$上に2点$C,D$がある.
$AB=BC, \angle BCD = 42°$のとき,$\angle BAC$の大きさを求めなさい.

⑩下の表は,$y$が$x$に反比例する関係を表したものです.
表のⒶにあてはまる数を求めなさい.

⑪数字を書いた3枚のカード$①,②,③$が袋$A$の中に,
数字を書いた5枚のカード$①,②,③,④,⑤$が袋$B$の中に入っています.
それぞれの袋からカードを1枚ずつ取り出すとき,
その2枚のカードに書いてある数の積が奇数になる確率を求めなさい.

図は動画内参照
この動画を見る 

福田の数学〜神戸大学2022年理系第4問〜双曲線が直線から切り取る弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#点と直線#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
aを正の実数とし、双曲線$\frac{x^2}{4}-\frac{y^2}{4}=1$と直線$y=\sqrt ax+\sqrt a$が異なる2点P,Q
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。
(1)aの取りうる値の範囲を求めよ。
(2)s,tの値をaを用いて表せ。
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。
(4)tの値をsを用いて表せ。

2022神戸大学理系過去問
この動画を見る 
PAGE TOP