ナイスな連立三元2次方程式 - 質問解決D.B.(データベース)

ナイスな連立三元2次方程式

問題文全文(内容文):
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2-yz=1 \\\
y^2-zx=2\\\
z^2-xy=3
\end{array}
\right.
\end{eqnarray}$
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2-yz=1 \\\
y^2-zx=2\\\
z^2-xy=3
\end{array}
\right.
\end{eqnarray}$
投稿日:2023.04.24

<関連動画>

【数Ⅰ】【2次関数】2次関数の最大最小場合分け2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a$は定数とする。関数$y=3x²-6ax+2~~(0\leqq x \leqq 2)$について、次の問いに答えよ。
(1) 最小値を求めよ。
(2) 最大値を求めよ。
この動画を見る 

山梨大(医)整式の剰余

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2020}$を$x^2-x+1$で割った余りを求めよ.

2020山梨大(医)過去問
この動画を見る 

【数Ⅰ】2次関数:2変数関数の最大最小

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x\geqq 0,y\geqq 0,x+y=4$のとき、次の問いに答えよう。
(1)xのとりうる値の範囲を求めよう。
(2)$x^2+y^2$の最小値と、最小値をとるx,yの値を求めよう。
(3)$x^2+y^2$の最大値と、最大値をとるx,yの値を求めよう。
この動画を見る 

【差がつく】余弦定理の証明、できますか?【高校・数学】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
余弦定理の証明解説動画です
この動画を見る 

福田のおもしろ数学388〜条件付き最小問題

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
正の実数$x,y,z$が次を満たしている。

$x\sqrt{yz}+y\sqrt{zx}+z\sqrt{xy} \geqq 1$

このとき、$x+y+z$の最小値を求めよ。
この動画を見る 
PAGE TOP