n乗根の方程式 - 質問解決D.B.(データベース)

n乗根の方程式

問題文全文(内容文):
これを解け.$x,y$は実数である.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=10 \\
\sqrt[3]{x}+\sqrt[3]{y}=\dfrac{5}{2}\sqrt[6]{xy}
\end{array}
\right.
\end{eqnarray}$
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.$x,y$は実数である.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=10 \\
\sqrt[3]{x}+\sqrt[3]{y}=\dfrac{5}{2}\sqrt[6]{xy}
\end{array}
\right.
\end{eqnarray}$
投稿日:2020.05.19

<関連動画>

慶應(医)三次方程式の解とΣ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8x^3-6x+1=0$の3つの解を$\alpha,\beta,\delta$とする.これを解け.
$\displaystyle \sum_{n=0}^{\infty}(\alpha^n+\beta^n+\delta^n)$

1993慶應(医)
この動画を見る 

福田の数学〜明治大学2022年理工学部第1問(2)〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)座標平面上の曲線$x^2+2xy+2y^2=5$を$C$とする。
$(\textrm{a})$直線$2x+y=t$が曲線$C$と共有点をもつとき、実数$t$の取り得る値の範囲は
$\boxed{コ}\leqq t \leqq \boxed{サ}$である。
$(\textrm{b})$直線$2x+y=1$が曲線$C$と$x \geqq 0$の範囲で共有点を少なくとも1個もつとき、
実数$t$ の取り得る値の範囲は$-\frac{1}{2}\sqrt{\boxed{シス}} \leqq t \leqq \boxed{セ}$である。

2022明治大学理工学部過去問
この動画を見る 

神戸大 複素数 三次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^3-2|z|+1=0$を満たす$z$のうち実数でないものの個数を求めよ

出典:1968年神戸大学 過去問
この動画を見る 

(x³+x²+x+1)⁷をx²-x+1で割ったあまりを求めよ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^3+x^2+x+1)^7$を$x^2-x+1$で割ったあまりを求めよ.
この動画を見る 

戦後の京都大学の入試いけんじゃね? 京都大学医学部1946 大学入試問題#929

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^4-17x^2-34x-30=0$
なる方程式を解け.

1946京都大学医学部過去問題
この動画を見る 
PAGE TOP