日本医科大学 バーゼル問題 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

日本医科大学 バーゼル問題 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
日本医科大学過去問題
abc=1 a>0,b>0,c>0
1a+1b+1ca+b+cを示せ
1a+1b+1cabc
n321+122+132+142++1n22
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
日本医科大学過去問題
abc=1 a>0,b>0,c>0
1a+1b+1ca+b+cを示せ
1a+1b+1cabc
n321+122+132+142++1n22
投稿日:2018.04.19

<関連動画>

練習問題1(数検準1級、教員採用試験 数列の極限)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#その他#数学検定#数学検定準1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
a2=a1=1
an+2=an+1+an
limnlogannを求めよ。
この動画を見る 

福田の数学〜神戸大学2022年理系第1問〜3項間の漸化式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数列{an}a1=1,a2=2,an+2=an+1an (n=1,2,3,)によって定める。
以下の問いに答えよ。
(1)全ての自然数nについてan+1=2anが成り立つことを示せ。
(2)数列{bn}bn=logan (n=1,2,3,)によって定める。
bnの値をnを用いて表せ。
(3)極限値limnanを求めよ。

2022神戸大学理系過去問
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第1問(3)〜連立漸化式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
1 (3)a1=0, b1=6とし、
an+1=an+bn2, bn+1=an (n≧1)
で定まるan, bnを用いて、平面上の点Pn(an, bn)(n=1,2,3,...)を定める。
(i)点Pnは常に直線y=    x+    上にある。
(ii)nを限りなく大きくするとき、点Pnは点(    ,    )に限りなく近づく。
この動画を見る 

こう見えても高校内容です。

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 数学を数楽に
問題文全文(内容文):
y=x2xのグラフをかけ
この動画を見る 

13神奈川県教員採用試験(数学:9番 数列の極限値)

アイキャッチ画像
単元: #関数と極限#数列の極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
9⃣a1=1,a2=2,(an+2)5=(an+1)4an
limnanを求めよ。
この動画を見る 
PAGE TOP preload imagepreload image