福田の数学〜北海道大学2024年文系第2問〜漸化式を解く - 質問解決D.B.(データベース)

福田の数学〜北海道大学2024年文系第2問〜漸化式を解く

問題文全文(内容文):
$\Large{\boxed{2}}$ 次の条件によって定められる数列$\left\{a_n\right\}$について考える。
$a_1$=3, $a_{n+1}$=$3a_n$-$\displaystyle\frac{3^{n+1}}{n(n+1)}$
(1)$b_n$=$\frac{a_n}{3^n}$ とおくとき、$b_{n+1}$を$b_n$と$n$の式で表せ。
(2)数列$\left\{a_n\right\}$ の一般項を求めよ。
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 次の条件によって定められる数列$\left\{a_n\right\}$について考える。
$a_1$=3, $a_{n+1}$=$3a_n$-$\displaystyle\frac{3^{n+1}}{n(n+1)}$
(1)$b_n$=$\frac{a_n}{3^n}$ とおくとき、$b_{n+1}$を$b_n$と$n$の式で表せ。
(2)数列$\left\{a_n\right\}$ の一般項を求めよ。
投稿日:2024.04.14

<関連動画>

福田の数学〜立教大学2023年経済学部第2問〜利息計算と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 1年目の初めに新規に100万円を預金し、2年目以降の毎年初めに12万円を追加で預金する。ただし、毎年の終わりに、その時点での預金額の8%が利子として預金に加算される。自然数$n$に対して、$n$年目の終わりに利子が加算された後の預金額を$S_n$万円とする。このとき、以下の問いに答えよ。
ただし、$\log_{10}2$=0.3010, $\log_{10}3$=0.4771とする。
(1)$S_1$, $S_2$をそれぞれ求めよ。
(2)$S_{n+1}$を$S_n$を用いて表せ。
(3)$S_n$を$n$を用いて表せ。
(4)$\log_{10}1.08$を求めよ。
(5)$S_n$>513 を満たす最小の自然数$n$を求めよ。
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型文系第4問(2)〜割り算の余りと等差数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ (2)2つの集合
A=$\left\{n|nは3で割ると2余る自然数である\right\}$
B=$\left\{n|nは5で割ると3余る自然数である\right\}$
を考える。A$\cap$Bの要素を小さい順に並べて作った数列の第$k$項は
$\boxed{\ \ ヨ\ \ }k$+$\boxed{\ \ ラ\ \ }$
である。また、A$\cup$Bの要素を小さい順に並べて作った数列の第100項は
$\boxed{\ \ リ\ \ }$
である。
この動画を見る 

【0≦θ≦πを問題文に追加】微分すると大変かも・・・ By ~らん~

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$m,n$:自然数
$m \geqq 2$
$f(\theta)=\displaystyle \frac{\sin\ n\theta}{\cos\ n\theta+m}$の最大値を$\alpha(m,n)$とする
$\displaystyle \sum_{m=2}^\infty \{\alpha(m,n)\}^2$を求めよ
この動画を見る 

福田のおもしろ数学465〜最小公倍数を含んだ3項間漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$x_1=19,x_2=95$

$x_{n+2}=1cm(x_{n+1},x_n)+x_n$

を満たす数列$\{x_n\}$に対して

$x_{2025}$と$x_{2026}$の最大公約数を求めよ。

*$1cm(a,b)$は$a$と$b$の最小公倍数を表す。
      
この動画を見る 

09岡山県教員採用試験(数学:1-(5) 行列式)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(5)$

$A=\begin{pmatrix}
1 & x & 2 \\
1 & x^2 & 4 \\
1 & x^3 & 8
\end{pmatrix}$

$\vert A \vert=0$となるとき$x$の値を求めよ.
この動画を見る 
PAGE TOP