福田のわかった数学〜高校3年生理系049〜極限(49)中間値の定理(3) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系049〜極限(49)中間値の定理(3)

問題文全文(内容文):
数学$\textrm{III}$ 中間値の定理(3)
Aさんは300km離れた地点まで車でちょうど5時間かけて移動した。
このときこの300kmの中のどこか60kmの区間を
ちょうど1時間で通過したことを示せ。
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 中間値の定理(3)
Aさんは300km離れた地点まで車でちょうど5時間かけて移動した。
このときこの300kmの中のどこか60kmの区間を
ちょうど1時間で通過したことを示せ。
投稿日:2021.07.16

<関連動画>

福田の数学〜明治大学2022年全学部統一入試理系第1問(3)〜無限級数と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(3)$k$を自然数として、
$f(x)=\sum_{n=1}^{\infty}\frac{x^{2k}}{(1+4x^{2k})^{n-1}}$
とおく。このとき、$\lim_{x \to 0}f(x)=\boxed{カ}$となる。

$\boxed{カ}$の解答群
$⓪0 ①1 ②2 ③\frac{1}{2} ④4$
$⑤\frac{1}{4} ⑥2^k ⑦\frac{1}{2^k} ⑧4^k ⑨\frac{1}{4^k}$

2022明治大学全統理系過去問
この動画を見る 

#65数検1級1次過去問「ミスれない戦い」 #極限

アイキャッチ画像
単元: #関数と極限#数列の極限#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{\sqrt[ n ]{ n! }}{n}$

出典:数検1級1次過去問
この動画を見る 

数学「大学入試良問集」【17−1 隣接三項間漸化式と極限】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科大学#東京医科大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=1,a_2=2,n \geqq 3$のとき$a_n=\displaystyle \frac{1}{5}(3a_{n-1}+2a_{n-2})$で定義される数列$\{a_n\}$の極限値を求めよ。
この動画を見る 

【概要欄に正確な文章と説明の補足】大学入試問題#76 京都大学(2007) 数列と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x,y$:異なる正の実数
$a_1=0$
$a_{n+1}=x a_n=s\ a_n+y^{n+1}$のとき
$\displaystyle \lim_{ n \to \infty }a_n \lt \infty$となるような$(x,y)$の範囲を図示せよ。

出典:2007年京都大学 入試問題
この動画を見る 

福田のおもしろ数学233〜区分求積の公式の変形

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n}\displaystyle \sum_{k=1}^n f\left( \frac{k}{n} \right) = \int_0^1 f(x) dx$である。では$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n}\displaystyle \sum_{k=3}^{n+5} f\left( \frac{k}{n} \right)$はどうなる?
この動画を見る 
PAGE TOP