福田のおもしろ数学051〜10秒チャレンジ!〜階乗の付いた分数の計算 - 質問解決D.B.(データベース)

福田のおもしろ数学051〜10秒チャレンジ!〜階乗の付いた分数の計算

問題文全文(内容文):
$\displaystyle \frac{1}{2!}+\displaystyle \frac{2}{3!}+\displaystyle \frac{3}{4!}+\displaystyle \frac{4}{5!}+\displaystyle \frac{5}{6!}$を計算してください。
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \frac{1}{2!}+\displaystyle \frac{2}{3!}+\displaystyle \frac{3}{4!}+\displaystyle \frac{4}{5!}+\displaystyle \frac{5}{6!}$を計算してください。
投稿日:2024.02.14

<関連動画>

【数B】数列:漸化式の基本を解説シリーズその5 分数型

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\dfrac{a_{n}}{3a_n+2}$で定められる数列{$a_n$}の一般項を求めよ。
この動画を見る 

愛媛 香川 大分 整式の剰余 整数 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数#数列#漸化式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#愛媛大学#香川大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
愛媛大学過去問題
$x^{2009}$を$x^2+1$で割った時の余りを求めよ。

香川大学
$6n^5-15n^4+10n^3-n$は30の倍数であることを示せ。

大分大学
$a_1=2,a_{n+1}=4a_n-s_n$のときの一般項を求めよ。
$s_n=\displaystyle\sum_{k=1}^n a_k$である。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題023〜名古屋大学2016年度理系数学第3問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B
指導講師: 福田次郎
問題文全文(内容文):
玉が2個ずつ入った2つの袋A,Bがあるとき、袋Bから玉を1個取り出して
袋Aに入れ、次に袋Aから玉を1個取り出して袋Bに入れる。という操作を
1回の操作と数えることにする。Aに赤玉が2個、Bに白玉が2個入った状態から
始め、この操作をn回繰り返した後に袋Bに入っている赤玉の個数がk個で
ある確率を$P_n(k)(n=1,2,3,\cdots)$とする。このとき、次の問いに答えよ。

(1)$k=0,1,2$に対する$P_1(k)$を求めよ。
(2)$k=0,1,2$に対する$P_n(k)$を求めよ。

2016名古屋大学理系過去問
この動画を見る 

一橋大 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学的帰納法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
'98一橋大学過去問題
すべての自然数nに対して$5^n+an+b$が16の倍数となるような
16以下の自然数a,bを求めよ。
この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第2問PART1〜場合分けされた連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ xyz空間において、3点(0,0,0),(1,0,0),(0,1,0)を通る平面$\pi_1$と3点(1,0,0),(0,1,0),(0,0,1)を通る平面$\pi_2$を考える。$x_0$=1, $y_0$=2, $z_0$=-2として、点P${}_0$($x_0$,$y_0$,$z_0$)から始めて、次の手順でP${}_1$($x_1$,$y_1$,$z_1$), P${}_2$($x_2$,$y_2$,$z_2$),... を決める。
・$k$が偶数のとき、$\pi_1$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
・$k$が奇数のとき、$\pi_2$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
このとき、次の問いに答えよ。
(1)$\pi_2$に直交するベクトルのうち、長さが1で$x$成分が正のもの$n_2$を求めよ。
(2)$x_{k+1}$,$y_{k+1}$,$z_{k+1}$をそれぞれ$x_k$,$y_k$,$z_k$を用いて表せ。
(3)$\displaystyle\lim_{k\to\infty}x_k$, $\displaystyle\lim_{k\to\infty}y_k$, $\displaystyle\lim_{k\to\infty}z_k$を求めよ。
この動画を見る 
PAGE TOP