福田のおもしろ数学051〜10秒チャレンジ!〜階乗の付いた分数の計算 - 質問解決D.B.(データベース)

福田のおもしろ数学051〜10秒チャレンジ!〜階乗の付いた分数の計算

問題文全文(内容文):
$\displaystyle \frac{1}{2!}+\displaystyle \frac{2}{3!}+\displaystyle \frac{3}{4!}+\displaystyle \frac{4}{5!}+\displaystyle \frac{5}{6!}$を計算してください。
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \frac{1}{2!}+\displaystyle \frac{2}{3!}+\displaystyle \frac{3}{4!}+\displaystyle \frac{4}{5!}+\displaystyle \frac{5}{6!}$を計算してください。
投稿日:2024.02.14

<関連動画>

【数B】【数列】初項4、公差5の等差数列{a_n}と、初項8,公差7の等差数列{b_n}について、これら2つの数列に共通に含まれている項を、順に並べてできる数列{c_n}の一般項を求めよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
初項4、公差5の等差数列${a_n}$と、初項8,公差7の等差数列${b_n}$について、これら2つの数列に共通に含まれている項を、順に並べてできる数列${c_n}$の一般項を求めよ。
この動画を見る 

【特性方程式】どういう意味?←解説します

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$a_{n}=1,a_{n+1}=2a_{n}-3$のように定義される数列の一般項$a_{n}$は?
この動画を見る 

福田のおもしろ数学484〜漸化式で定まる数列の連続する正の項の最大個数

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

実数列$a_1,a_2,a_3,\cdots $が

$a_n=a_{n-1}-a_{n+2} (n=1,2,3,4\cdots)$

を満たしている。

この数列の連続する要素のうちで、

すべてが正となるものの最大個数はいくつか?
    
この動画を見る 

東邦 横市(医)慶應 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
東邦大学過去問題
$2log_5x+log_5y=log_5(x^2+y+59)$を満たす整数x,y

横浜市立大学過去問題
$\displaystyle\sum_{k=1}^{2n}(-1)^{k-1}k^2$

慶応義塾大学過去問題
$x+y+z=28$を満たす非負整数の組(x,y,z)のうちZが偶数となる場合の個数
この動画を見る 

数列の和 解説2通り!!

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$(2-1) \times (2+1) + (3-2)(3+2)+(4-3)(4+3)+ \cdots +(99-98)(99+98)+(100-99)(100+99)$
この動画を見る 
PAGE TOP