福田のおもしろ数学051〜10秒チャレンジ!〜階乗の付いた分数の計算 - 質問解決D.B.(データベース)

福田のおもしろ数学051〜10秒チャレンジ!〜階乗の付いた分数の計算

問題文全文(内容文):
$\displaystyle \frac{1}{2!}+\displaystyle \frac{2}{3!}+\displaystyle \frac{3}{4!}+\displaystyle \frac{4}{5!}+\displaystyle \frac{5}{6!}$を計算してください。
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \frac{1}{2!}+\displaystyle \frac{2}{3!}+\displaystyle \frac{3}{4!}+\displaystyle \frac{4}{5!}+\displaystyle \frac{5}{6!}$を計算してください。
投稿日:2024.02.14

<関連動画>

数がでかすぎる!1の位の数字をどう求める?【東京大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(10^210)/(10^10+3)の整数部分のけた数と、1の位の数字を求めよ。ただし、3^21=10460353203を用いてよい。
この動画を見る 

旭川医科大2021 確率漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
コイン2枚 表表+2,表裏+1,裏裏0であり,0からスタートする.
$n$回の合計が
(1)$a_1,b_1,c_1,a_2,b_2,c_2$のとき,求めよ.
(2)$a_{n+1},b_{n+1},c_{n+1}$を,$a_n,b_n,c_n$で求めよ.
(3)$x_{n+1}=\dfrac{1}{4}x_n;\dfrac{1}{4}$を$x_1$を用いて表せ.
(4)$a_n$を求めよ.

2021旭川医大過去問
この動画を見る 

千葉大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
90千葉大学過去問題
$a_1=1$
$3(a_1+a_2+\cdots +a_n)=(n+2)a_n$
(1)一般項$a_n$を求めよ。
(2)$\displaystyle\sum_{k=1}^n \frac{1}{a_k}$
この動画を見る 

漸化式と素数

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$であり,$a_{n+1}=2a_n+1$である.
$a_n$が素数なら$n$は素数であることを示せ.
この動画を見る 

金沢大(医) 漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#金沢大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
金沢大学過去問題
$a_1=36$ (nは自然数)
$a_{n+1}=2a_n+2^{n+3}n-17・2^{n+1}$
(1)$\{ a_n \} $の一般項を求めよ。
(2)$a_n$>$a_{n+1}$となるaの範囲及び$a_n$が最小となるnの値を求めよ。
(3)$S_n=a_1+a_2+a_3+ \cdots +a_n$で$S_n$が最小となるnの値をすべて求めよ。
この動画を見る 
PAGE TOP