福田の数学〜立教大学2025理学部第1問(5)〜ド・モアブルの定理と複素数の計算 - 質問解決D.B.(データベース)

福田の数学〜立教大学2025理学部第1問(5)〜ド・モアブルの定理と複素数の計算

問題文全文(内容文):

$\boxed{1}$

(5)$i$を虚数単位とする。

実数$a,b$が等式

$\left(\dfrac{1}{\sqrt2}+\dfrac{1}{\sqrt2}i\right)^9+\left(\dfrac{1}{2}+\dfrac{\sqrt3}{2}i\right)^{11}=a+bi$

を満たすとき、$a=\boxed{ク},b=\boxed{ケ}$である。

$2025$年立教大学理学部過去問題
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(5)$i$を虚数単位とする。

実数$a,b$が等式

$\left(\dfrac{1}{\sqrt2}+\dfrac{1}{\sqrt2}i\right)^9+\left(\dfrac{1}{2}+\dfrac{\sqrt3}{2}i\right)^{11}=a+bi$

を満たすとき、$a=\boxed{ク},b=\boxed{ケ}$である。

$2025$年立教大学理学部過去問題
投稿日:2025.06.07

<関連動画>

北里大学2021年医学部第1問(2)。複素数平面でド・モアブルの定理を利用した偏角、絶対値の計算や正三角形の残りの頂点を求める

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(2)iを虚数単位とし、$z_1=\frac{(\sqrt3+i)^{17}}{(1+i)^{19}(1-\sqrt3i)^7}, z_2=-1+i$とする。
$z_1$の偏角$\theta$のうち、$\\0 \leqq \theta \lt 2\pi$を満たすものは$\theta=\boxed{オ}$であり、$|z_1|=\boxed{カ}$である。
複素数平面上で$z_1,z_2$を表す点をそれぞれA,Bとする。このとき線分ABを
1辺とする正三角形ABCの、頂点Cを表す複素数の実部は0または$\boxed{キ}$である。
a,bを正の整数とし、複素数$\frac{(\sqrt3+i)^7}{(1+i)^a(1-\sqrt3i)^b}$の偏角の一つが$\frac{\pi}{12}$であるとき、
a+bの最小値は$\boxed{ク}$である。

2021北里大学医学部過去問
この動画を見る 

福田のおもしろ数学200〜3次方程式の解の公式、カルダノの公式

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
3次方程式$ax^3+bx^2+cx+d=0 ~~(a\neq0)$の解を導く
この動画を見る 

福田の数学〜千葉大学2023年第8問〜iのn乗根Part1

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{8}$ 実数$a$,$b$と虚数単位$i$を用いて複素数$z$が$z$=$a$+$bi$の形で表されるとき、$a$を$z$の実部、$b$を$z$の虚部と呼び、それぞれ$a$=$Re(z)$,$b$=$Im(z)$と表す。
(1)$z^3$=$i$を満たす複素数$z$をすべて求めよ。
(2)$z^{100}$=$i$を満たす複素数$z$のうち、$Re(z)$≦$\frac{1}{2}$かつ$Im(z)$≧0を満たすものの個数を求めよ。
(3)$n$を正の整数とする。$z^n$=$i$を満たす複素数$z$のうち、$Re(z)$≧$\frac{1}{2}$を満たすものの個数を$N$とする。$N$>$\frac{n}{3}$となるための$n$に関する必要十分条件を求めよ。
この動画を見る 

中学生の知識でオイラーの公式を理解しよう Vol 8 複素数 ドゥモアブルの定理

アイキャッチ画像
単元: #複素数平面#複素数平面#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式を解説していきます.
この動画を見る 

早稲田大学 数列、複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=1+2\sqrt{ 6 }i$
$Z^n=a_{n}+b_{n}i$

(1)
$a_{n}^2+b^2_{n}=5^{2n}$を示せ

(2)
$a_{n+2}=Pa_{n+1}+qa_{n}$ $P,q$の値

(3)
$a_{n}$は5の倍数でないことを示せ

(4)
$Z^n$は実数でないことを示せ

出典:2013年早稲田大学 過去問
この動画を見る 
PAGE TOP