問題文全文(内容文):
弘前大学過去問題
$a_1=a_2=1$
$a_{n+1}= a_n+2 \displaystyle\sum_{k=1}^{n-1}a_k(n \geqq 2)$
数列$ \{ a_n \} $の一般項$a_n$を求めよ。
弘前大学過去問題
$a_1=a_2=1$
$a_{n+1}= a_n+2 \displaystyle\sum_{k=1}^{n-1}a_k(n \geqq 2)$
数列$ \{ a_n \} $の一般項$a_n$を求めよ。
単元:
#大学入試過去問(数学)#数列#漸化式#数学(高校生)#弘前大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
$a_1=a_2=1$
$a_{n+1}= a_n+2 \displaystyle\sum_{k=1}^{n-1}a_k(n \geqq 2)$
数列$ \{ a_n \} $の一般項$a_n$を求めよ。
弘前大学過去問題
$a_1=a_2=1$
$a_{n+1}= a_n+2 \displaystyle\sum_{k=1}^{n-1}a_k(n \geqq 2)$
数列$ \{ a_n \} $の一般項$a_n$を求めよ。
投稿日:2018.07.16