福田の数学〜大阪大学2025文系第3問〜放物線と接線が作る面積の最大値 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2025文系第3問〜放物線と接線が作る面積の最大値

問題文全文(内容文):

$\boxed{3}$

座標平面において、$y=x^2-1$で表される放物線を

$C$とする。

$C$上の点$P$における$C$の接線を$\ell$とする。

ただし、点$P$は$y$軸上にはないものとする。

$O$を原点とし、放物線$C$と線分$OP$をよび

$y$軸で囲まれた図形の面積を$S$、

放物線$C$と接線$\ell$および$y$軸で囲まれた図形の

面積を$T$とする。

$S-T$の最大値を求めよ。

$2025$年大阪大学文系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

座標平面において、$y=x^2-1$で表される放物線を

$C$とする。

$C$上の点$P$における$C$の接線を$\ell$とする。

ただし、点$P$は$y$軸上にはないものとする。

$O$を原点とし、放物線$C$と線分$OP$をよび

$y$軸で囲まれた図形の面積を$S$、

放物線$C$と接線$\ell$および$y$軸で囲まれた図形の

面積を$T$とする。

$S-T$の最大値を求めよ。

$2025$年大阪大学文系過去問題
投稿日:2025.06.17

<関連動画>

福田の数学〜京都大学2025文系第2問〜恒等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

実数$a,b$についての次の条件(*)を考える。

(*)ある実数係数の$2$次式$f(x)$と、

ある実数$c$に対して、

$x$についての恒等式

$\dfrac{1}{8}x^4+ax^3+bx^2=f(f(x))+c \cdots ①$

が成り立つ。

この条件(*)を満たす点$(a,b)$全体の集合を

座標平面上に図示せよ。

$2025$年京都大学文系過去問題
この動画を見る 

福田のおもしろ数学454〜積分に関するシュワルツの不等式の証明と等号成立条件

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$p\leqq x \leqq q$で定義された連続関数$f(x),g(x)$に対して

$\left(\displaystyle \int_{p}^{q} f(x)^2 dx\right)\left(\displaystyle \int_{p}^{q}g(x)^2 dx \right) \geqq \left(\displaystyle \int_{p}^{q} f(x)g(x)dx\right)^2$

を証明して下さい。

また等号成立条件も調べて下さい。
   
この動画を見る 

20年5月数学検定準1級1次試験(円の方程式)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣円$C_1$の中心は(-6,2)で直線$l:3x-4y+1=0$に接する。
このとき円$C_1$がx軸から切り取る線分の長さl'を求めよ。
この動画を見る 

福田の数学〜九州大学2025文系第2問〜円周上の2点との距離の2乗の和の最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#三角関数#三角関数とグラフ#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

半径$1$の円周$C$上の$2$点$A,B$は

$AB=\sqrt3$をみたすとする。

点$P$が円周$C$上を動くとき、

$AP^2+BP^2$の最大値を求めよ。

$2025$年九州大学文系過去問題
この動画を見る 

約数 國學院高校

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
60の正の約数をすべてかけると$60^▢$と表せる

国学院高等学校
この動画を見る 
PAGE TOP