答えが2024となる問題作れ!!雑談あり。問題作ったらコメント欄にお願い! - 質問解決D.B.(データベース)

答えが2024となる問題作れ!!雑談あり。問題作ったらコメント欄にお願い!

問題文全文(内容文):
答えが2024となる問題を作れ!!
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
答えが2024となる問題を作れ!!
投稿日:2024.01.01

<関連動画>

気付けば一瞬!! 関数は図形の問題として捉えよ

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△ABH:△BCH=?
*図は動画内参照
この動画を見る 

福田の数学〜空間図形の通過範囲の面積と体積〜杏林大学2023年医学部第3問前編〜空間図形の通過範囲の面積と体積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標空間において原点 O を中心とする半径 1 の円 C がxy平面上にあり、ェ>0の領域において点 A ( 0 , -1 , 0 )から点 B ( 0 , 1 , 0 )まで移動する C 上の動点を P とする。
( 1 )下記の 2 条件を満たす直角二等辺三角形 PQR を考える。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・点 R のz座標は正であり、直線 PR はz軸に平行である。
点 P が点 A から点 B まで移動するとき、三角形 PQR の周および内部が通過してできる立体について、以下の間いに答えよ。
(a) 点 P が点 A から点 B まで移動するとき、線分 PR が通過してできる曲面の展開図は、横軸に弧 AP の長さ、縦軸に線分 PR の長さをとったグラフを考えればよく、で表される概形となり、その面積はである。
線分 PQ の中点を M とし、点 M から直線 QR に引いた垂線と線分 QR との交点を H とする。点 H は線分 QR を 1:に内分する点である。点 Pの位置に依らず、線分の長さについて×(MH)2+(OM)2=1が成り立つ。点Pが点 A から点 B まで移動するとき、線分 MHが通過する領域の概形はであり、面積はπである。
(b) 点 P が点 A から点 B まで移動するとき、線分 QR が通過してできる曲面上において、 2 点 A , B を結ぶ最も短い曲線は/fboxが描く曲線である。
の解答群
①点Q
②点R
③設問(a)で考えた点H
④線分QRとyz平面との交点
⑤線分QRを1:2に内分する点
⑥線分QRを2:1に内分する点
⑦三角形PQRの重心からッ線分QRに引いた垂線と線分QRとの交点
(c) 点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積はπである。またPQRの面積は、線分 PQを直径とする円の面積のπ倍である。よって、立体Vの体積はである。
( 2 ) z0の領域において、yz平面上の点 T を頂点とし、 2 点 P , Q を通る放物線Lを考える。ただし、 Q, T は下記の 2 条件を満たす点とする。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・三角形 PQT はxz平面に平行であり、点 T の z 座標は線分 PQ の長さに等しい。
点 P が( 1 , 0 , 0 )であるとき、放物線Lを表す式は
y=0,z=セソx2+(ただし、-1 \leq x \leq 1)であり、この放物線と線分PQで囲まれる図形の面積はである。
点 P が点 A から点 B まで移動するとき、放物線Lと線分 PQ で囲まれる図形が通過してできる立体の体積はテトである。

2023杏林大学過去問
この動画を見る 

【数Ⅰ】データの分析:標準得点について

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅰ データの分析】
標準得点(Z得点)と呼ばれる調整された得点の計算方法と、その特徴について説明をします。
共通テストの模試や私大の入試にも良く出題されるテーマですので、この機会にぜひマスターしておきましょう!
この動画を見る 

【有理数とは!】平方根(有理数と無理数)前編:教科書順で内容確認~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
平方根(有理数と無理数)に関して解説していきます.
この動画を見る 

√と二乗

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a=1.23456789
(a1)2+(a2)2=?
この動画を見る 
PAGE TOP preload imagepreload image