10次方程式の解 - 質問解決D.B.(データベース)

10次方程式の解

問題文全文(内容文):
$\frac{x^{11}-1}{x-1}=0$の解の1つをαとする.
$(1-α)(1-α^2)(1-α^3)\cdots(1-α^{10})$の値を求めよ.
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\frac{x^{11}-1}{x-1}=0$の解の1つをαとする.
$(1-α)(1-α^2)(1-α^3)\cdots(1-α^{10})$の値を求めよ.
投稿日:2023.10.30

<関連動画>

福田の数学〜早稲田大学2025教育学部第1問(2)〜三角形の外心と垂心と点の回転

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)座標平面上の$3$点

$A(1,0),B(0,-1),C(-1,1)$を

頂点とする三角形$ABC$を考える。

三角形$ABC$をその外心を中心として反時計回りに

$\dfrac{\pi}{3}$だけ回転することで得られる三角形の

垂心の座標を求めよ。

なお、三角形の$3$頂点から対辺または

その延長に下ろした$3$本の垂線は一点で交わり、

その交点を三角形の垂心という。

$2025$年早稲田大学教育学部第1問過去問題
この動画を見る 

【数C】【複素数平面】基本公式と式変形 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数$z$が$3z+\bar{z}=2-2i$を満たすとき、以下の問いに答えよ。

(1)$3\bar{z}+z$を求めよ。

(2)$z$を求めよ。
この動画を見る 

大学入試問題#235 自治医科大学(2014) 複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$\omega=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$のとき
$\omega^{20}+\omega^{19}+\omega^8+\omega^6+\omega^4+\omega^3$の値を求めよ。

出典:2012年自治医科大学 入試問題
この動画を見る 

数学Ⅲが1時間で分かる動画!極限、微分積分をメインに!複素数平面を添えて【篠原好】

アイキャッチ画像
単元: #数Ⅱ#複素数平面#微分法と積分法#平均変化率・極限・導関数#複素数平面#数学(高校生)#数C
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
極限、微分積分をメインに!複素数平面を添えて
「数学Ⅲが1時間で分かる」動画です。
この動画を見る 

自治医科大学

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数C#数Ⅲ#自治医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$
$\displaystyle \frac{1}{1-\alpha}+\displaystyle \frac{1}{1-\alpha^2}+\displaystyle \frac{1}{1-\alpha^3}+\displaystyle \frac{1}{1-\alpha^4}+$
$\displaystyle \frac{1}{1-\alpha^5}+\displaystyle \frac{1}{1-\alpha^6}$

(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{3\sin 4x}{x+\sin x}$

出典:2017年自治医科大学 過去問
この動画を見る 
PAGE TOP