00京都府採用試験(数学:3番相加相乗平均) - 質問解決D.B.(データベース)

00京都府採用試験(数学:3番相加相乗平均)

問題文全文(内容文):
3⃣3つの正の数の相加平均と相乗平均の関係を記述し、それを証明せよ。
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
3⃣3つの正の数の相加平均と相乗平均の関係を記述し、それを証明せよ。
投稿日:2020.07.07

<関連動画>

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?

$(2+3)(2^2+3^2)(2^4+3^4)(2^8+3^8)(2^{16}+3^{16})(2^{32}+3^{32})$ VS $3^{64}$
この動画を見る 

円周率πの2乗が無理数となる証明

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
円周率πの2乗が無理数となる証明に関して解説します.
この動画を見る 

福田のおもしろ数学215〜三平方の定理が成り立つ左辺の二項のどちらか一方は4の倍数である証明

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
正の数$x,y$が$x^2+y^2=z^2$を満たすとき、$x$または$y$は$4$の倍数となることを証明してください。
この動画を見る 

福田のおもしろ数学478〜不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a,b,c$を正の数とする。

$a^2+b^2+c^2=3$のとき

$\dfrac{1}{1+2ab}+\dfrac{1}{1+2bc}+\dfrac{1}{1+2ca} \geqq 1$

を証明して下さい。
    
この動画を見る 

【数学Ⅱ/高2の予習】恒等式

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式が$x$についての恒等式となるように、定数$a,b,c$の値を求めよ。
(1)
$3x^2+8x+6=a(x+1)^2+b(x+1)+c$


(2)
$\displaystyle \frac{3}{(x-1)(2x+1)}=\displaystyle \frac{a}{x-1}+\displaystyle \frac{b}{2x-1}$
この動画を見る 
PAGE TOP