福田の入試問題解説〜北海道大学2022年理系第1問〜絶対値の付いた2次関数の最小値(難) - 質問解決D.B.(データベース)

福田の入試問題解説〜北海道大学2022年理系第1問〜絶対値の付いた2次関数の最小値(難)

問題文全文(内容文):
$0 \leqq a \leqq b \leqq 1$を満たすa,bに対し、関数
$f(x)=|x(x-1)|+|(x-a)(x-b)|$
を考える。xが実数の範囲を動くとき、$f(x)$は最小値mをもつとする。
(1)$x \lt 0$および$x \gt 1$では$f(x) \gt m$となることを示せ。
(2)$m=f(0)$または$m=f(1)$であることを示せ。
(3)$a,b$が$0 \leqq a \leqq b \leqq 1$を満たして動くとき、mの最大値を求めよ。

2022北海道大学理系過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$0 \leqq a \leqq b \leqq 1$を満たすa,bに対し、関数
$f(x)=|x(x-1)|+|(x-a)(x-b)|$
を考える。xが実数の範囲を動くとき、$f(x)$は最小値mをもつとする。
(1)$x \lt 0$および$x \gt 1$では$f(x) \gt m$となることを示せ。
(2)$m=f(0)$または$m=f(1)$であることを示せ。
(3)$a,b$が$0 \leqq a \leqq b \leqq 1$を満たして動くとき、mの最大値を求めよ。

2022北海道大学理系過去問
投稿日:2022.03.06

<関連動画>

中央値 最頻値 平均値  A

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
生徒20人が借りた本の冊数について
正しいものを選べ
ア 合計40冊
イ 最頻値は1冊
ウ 中央値は2冊
エ 平均値より多くの本を借りたのは6人
*図は動画内参照
2021千葉県(改)
この動画を見る 

【数Ⅰ】【2次関数】2次関数の平行移動1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線$y=-3x^2$を、頂点が次の点になるように平行移動するとき、移動後の放物線の方程式を求めよ。
(1)$(1,2)$
(2)$(-2,3)$
この動画を見る 

【数Ⅰ】【数と式】平方根の近似値 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sqrt{2}=1.4142$, $\sqrt{3}=1.7321$
とするとき, 分母の有理化を利用して, 次の値を求めよ。
(1) $\dfrac{10}{\sqrt{3}+\sqrt{2}}$ (2) $\dfrac{1}{\sqrt{12}-\sqrt{2}}$


$x=1-\sqrt{5}$
のとき, 次の式の値を求めよ。

(1) $x^2-2x-4$ (2) $x^3-2x^2$
この動画を見る 

因数分解

アイキャッチ画像
単元: #数と式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^{2}bd+bc^{2}-ab^{2}-acd^{2}$
因数分解しなさい

東北学院大過去問
この動画を見る 

【数Ⅰ】【データの分析】変量Xのデータの平均値xが35、分散Sx²が16で新しい変量Yのデータについて、平均値y、分散Sy²、標準偏差Syを求めよ(1)y=x-10(2)y=3x(3)y=-x/2+6

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#データの分析#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
変量Xのデータの平均値xが35、分散Sx²が16であるとする。
このとき、次の式によってえられる新しい変量Yのデータについて、平均値y、分散Sy²、標準偏差Syを求めよ。
(1)y=x-10
(2)y=3x
(3)y=-x/2+6
この動画を見る 
PAGE TOP