【数Ⅲ-166】積分と面積②(やや複雑編) - 質問解決D.B.(データベース)

【数Ⅲ-166】積分と面積②(やや複雑編)

問題文全文(内容文):
数Ⅲ(積分と面積②・やや複雑編)

Q
次の曲線と直線で囲まれた部分の面積を求めよ。

①曲線$x=y^2-1$、直線$x-y-1=0$
②2曲線$y=x^2$、$y=\frac{2x}{x^2+1}$
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と面積②・やや複雑編)

Q
次の曲線と直線で囲まれた部分の面積を求めよ。

①曲線$x=y^2-1$、直線$x-y-1=0$
②2曲線$y=x^2$、$y=\frac{2x}{x^2+1}$
投稿日:2020.08.13

<関連動画>

大学入試問題#598「計算が大変でした」 関西大学(2009) #区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n-k}{n\sqrt{ 3n^2+k^2 }}$

出典:2009年関西大学 入試問題
この動画を見る 

大学入試問題#353「依頼により誘導通りに解いてみた」 埼玉大学2013 #定積分 #キングプロパティ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$f(x)$連続
$\displaystyle \int_{0}^{\pi} x\ f(\sin\ x)dx=\displaystyle \frac{\pi}{2}\displaystyle \int_{0}^{\pi} f(\sin\ x) dx$


(2)
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{x(a^2-4\cos^2\ x)\sin\ x}{a^2-\cos^2x} dx$

出典:2013年埼玉大学 入試問題
この動画を見る 

AkiyaMathさんと学ぶ積分問題 #King_property

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{log(1+2x)}{1+x+x^2}dx$
この動画を見る 

大学入試問題#539「これはよく出る」 佐賀大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{d\theta}{\cos^3\theta}$

出典:2023年佐賀大学 入試問題
この動画を見る 

数学「大学入試良問集」【19−22 積分と不等式・無限級数の良問】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
自然数$n$に対して$S(x)=\displaystyle \sum_{k=1}^n(-1)^{k-1}x^{2k-2},R(x)=\displaystyle \frac{(-1)^nx^{2n}}{1+x^2}$とする。
さらに$f(x)=\displaystyle \frac{1}{1+x^2}$とする。このとき、次の問いに答えよ。
(1)等式$\displaystyle \frac{0}{1}S(x)dx=\displaystyle \sum_{k=1}^n(-1)^{k-1}\displaystyle \frac{1}{2k-1}$が成り立つことを示せ。
(2)定積分$\displaystyle \int_{0}^{1}f(x)dx$の値を求めよ。
(3)等式$S(x)=f(x)-R(x)$が成り立つことを示せ。
(4)不等式$|\displaystyle \int_{0}^{1}R(x)dx| \leqq \displaystyle \frac{1}{2n+1}$が成り立つことを示せ。
(5)無限階級$1-\displaystyle \frac{1}{3}+\displaystyle \frac{1}{5}-\displaystyle \frac{1}{7}+・・・$の和を求めよ。
この動画を見る 
PAGE TOP